
Block 5:

Failure: The Material's Role

LEARNING OBJECTIVES FOR BLOCK M5

Through participation in the lectures, recitations, and work associated with Block M5, it is intended that you will be able to.......

-summarize and describe the key aspects leading to and engaged in material failure at both the macroscopic and microscopic levels
-apply developed models of material behavior to assess failure in various scenarios

Unit M5.1 Material Failure/Strength

Readings:

A&J 8, 11, 17 CDL 5.2, 5.3, 5.8, 5.18

16.003/004 -- "Unified Engineering"
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M5.1

Through participation in the lectures, recitations, and work associated with Unit M5.1, it is intended that you will be able to.......

-define the concept of strain energy
-describe the various macroscopic stress-strain behaviors of materials prior to final failure
-identify the key points in material behavior leading to failure and label the associated properties
-recall the aspects of time-dependent material response

We often use the word "failure", but that term is often used rather "loosely". That leads us to ask the question:

What is failure?

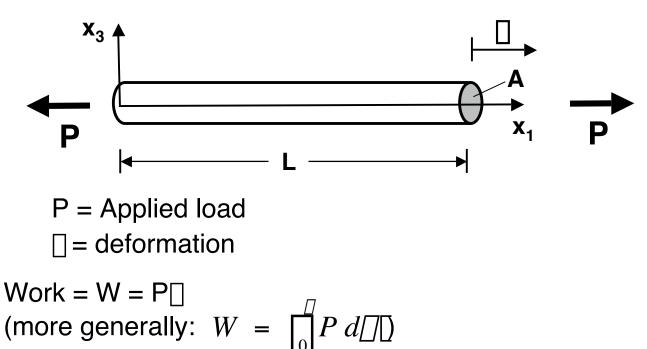
In terms of structures, failure has a very specific meaning:

--> <u>structural</u> <u>failure</u>: the inability of the structure to perform as intended

In Unit M1.1 we talked about needs to

- carry loads (strength)
- resist deformation (rigidity)
- have sufficient lifetime (longevity)

There are a number of different <u>structural</u> mechanisms by which failure can occur. Here we want to focus on <u>material</u> failure which leads to structural failure.


So we need to return to the stress-strain curve which we defined in Block 3 and go beyond the initial linear range where we defined modulus. But it is useful to first define the concept of.....

Strain Energy

Deforming a body adds energy to it as work is done on the body

--> consider a rod under load

Figure 5.1-1 Rod under uniaxial load

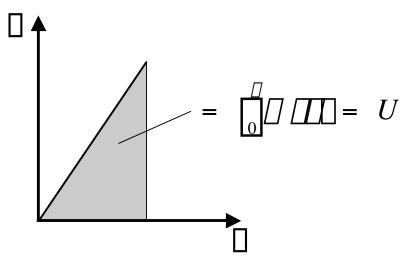
How to get energy?

$$\Box = \frac{\Box}{L} \qquad \Box = \frac{P}{A}$$

via 1st Law of Thermodynamics:

$$W - U = 0$$

So if this is a non-dissipative process (i.e., all energy stored, none lost as heat, etc.), then:


with: AL = V = Volume

So get:

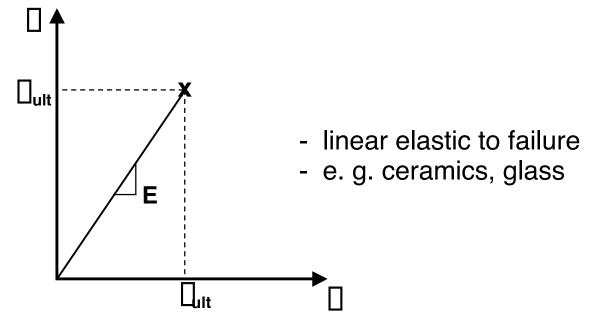
$$U = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \boxed{\coprod} \underbrace{Strain}_{unit \ volume} \underbrace{Energy}_{unit \ volume}$$

Think, graphically, as area under the stress-strain curve:

Figure 5.1-2 Representation of strain energy on stress-strain curve

Note that if
$$\Box$$
 - \Box relation is linear, $\Box = E\Box$
$$\Box U = \frac{1}{2}E\Box$$

Armed with this, we can now consider the full.....


Stress-Strain Curve: Yield and Ultimate Stress

The overall stress-strain behavior that a material shows, gives it overall characteristics. In identifying these, it is first useful to identify three key stresses/strains/points: (in tension or compression)

We can now classify various stress-strain behavior.

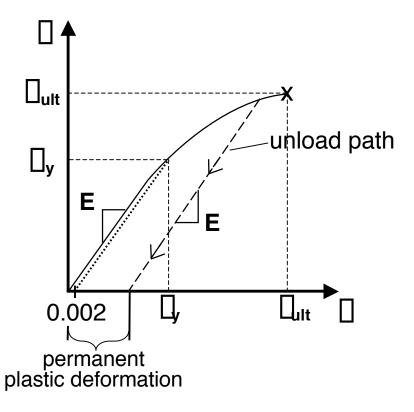

--> Brittle

Figure 5.1-3 Representation of stress-strain behavior for brittle material

--> <u>Ductile</u> (also...plastic)

Figure 5.1-4 Representation of stress-strain behavior for ductile material

In metals and common engineering materials, yield defined by 0.002 offset (empirically)

- plastic (permanent) deformation
- unloading is elastic
- e.g., metals, polymers

--> Elastic (also...plastic)

Figure 5.1-5 Representation of stress-strain behavior for elastic material (with softening)

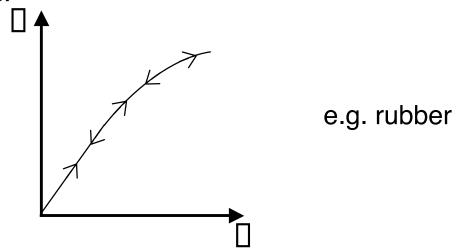
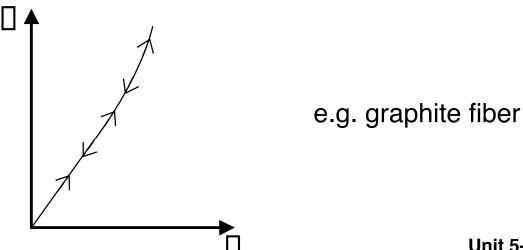
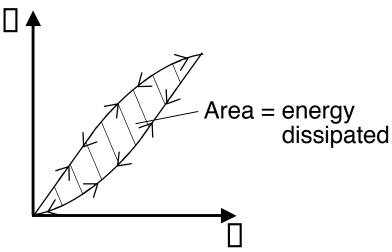



Figure 5.1-6 Representation of stress-strain behavior for elastic material (with stiffening)



For both cases:

- Load and unload along same path
- no energy consumed

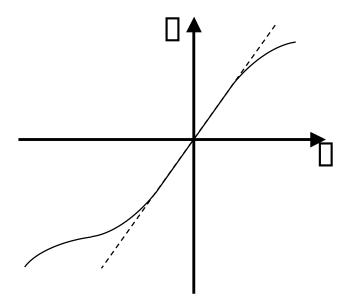
--> Anelastic

Figure 5.1-7 Representation of stress-strain behavior for anelastic material

- Load and unload paths <u>not</u> the same
- Energy dissipated (generally as heat -- e.g., paper clip)
- provides damping
- e.g., soft metals, polymer

Note: yield is one form of this (e.g., plasticity)
Unit 5-1 p

We generally measure the stress-strain behavior by a tensile test or a compressive test. However, the behavior between these two loading cases can (appear to) differ. We thus need to consider the concept of....


True Stress and True Strain

If we plot "nominal" (subscript "n") stress-strain using our engineering definition of stress and strain:

$$\Box_n = \frac{P}{A_o} \qquad \Box_n = \frac{\Box L}{L_o}$$

subscript "o" indicates original (unloaded)

Figure 5.1-8 Representation of uniaxial engineering stress-strain behavior over tensile and compressive regimes

This is, in part, due to a phenomenon known as "<u>necking</u>" -- yielded region shrinks in cross-sectional area (in tension). So need to define <u>true</u> stress and <u>true</u> strain.

--> Start with incremental strain:
$$d\Box = \frac{dL}{L}$$

$$\Box \Box_{(t)} = \Box_{L_{f}}^{L_{f}} \frac{dL}{L} = \ln(L) \Box_{L_{o}}^{L_{f}}$$

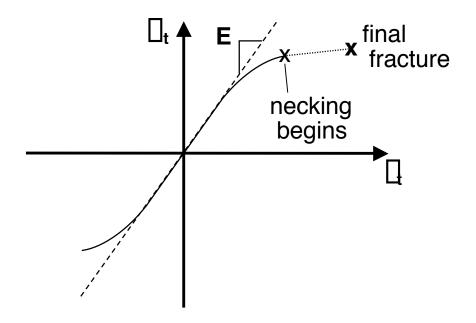
$$= \ln\left(L_{f}\right) \Box \ln\left(L_{o}\right) = \ln\left[\frac{L_{f}}{L_{o}}\right]$$

$$= \ln\frac{L_{f}}{L_{o}} = \ln\frac{L_{o} + \Box}{L_{o}} = \ln\left[\frac{1}{L_{o}} + \frac{\Box}{L_{o}}\right]$$
for $\frac{\Box}{L_{0}}$ small:
$$\ln\left[\frac{1}{L_{o}} + \frac{\Box}{L_{o}}\right] \Box \frac{\Box}{L_{0}}$$

$$\Box\Box\Box\Box\Box\Box$$

Not true for larger strains (plastic)

Similarly,
$$\prod_t = \frac{P}{A}$$


where A is area at any point in time

For plastic deformation, volume is generally conserved, so:

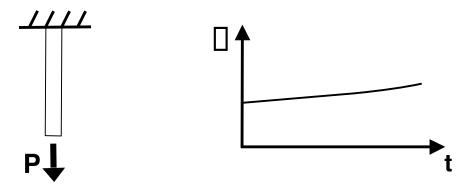
$$A_f L_f = A_o L_o = AL = \text{constant}$$

$$\Box A = A_f \frac{L_f}{L}$$

$$\Box \Box_{(t)} = \frac{PL}{A_f L_f} = \frac{PL}{A_o L_o}$$

Now plotting the same behavior except on a "true" basis

Figure 5.1-9 Representation of uniaxial true stress-strain behavior over tensile and compressive regimes


The symmetry is recovered

Thus far we have considered only time-independent phenomena. However, there is also a time-dependence in strain response....

Viscoelasticity and Creep

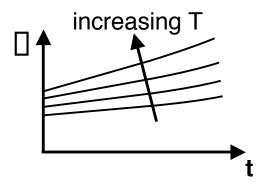
In general, strain increases with time for a given load/stress level

Figure 5.1-10 Representation of creep behavior for rod subjected to constant load

This can either be

- viscoelasticity (due to "flow"...viscous)
- creep (due to plasticity)

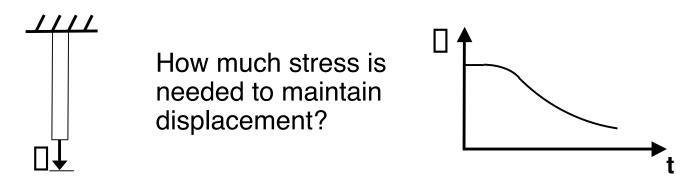
(hang a weight off a support pipe)


--> Dependence of strain is on <u>time</u> and <u>temperature</u> Generally:

creep strain rate

stress

(A, n, Q, R = constants that are measured for a material)


- --> particularly important at high temps
 - engine blades
 - keeps aluminum off supersonic wings

- --> Related phenomena
 - creep rupture

- relaxation (for viscoelastic materials) for a given deformation, stress decreases

We'll next consider the mechanisms by which these phenomena occur

Unit 5.1 (New) Nomenclature

t time
U strain energy per unit volume
W work
$\square_{\!\scriptscriptstyle \mathrm{cr}}$ creep strain
$\square_{\!\scriptscriptstyle{h}}$ nominal strain
🛘 true strain
□ _n nominal stress
□ _t true stress