Unit M5.4 Other Considerations in Failure

Readings:

A & J 13, 14, 15, 16 CDL 5.9, 5.14, 5.15 A & J 17-27

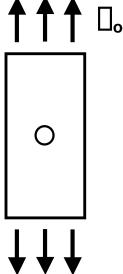
16.003/004 -- "Unified Engineering"
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology

LEARNING OBJECTIVES FOR UNIT M5.4

Through participation in the lectures, recitations, and work associated with Unit M5.4, it is intended that you will be able to......

-describe stress concentrations and their effects
-explain the basic concepts associated with fracture mechanics
-employ the basic fracture mechanics model to assess fracture
-discuss the concept of fatigue and key associated issues

There are many other ways in which a material/structure can fail. We'll look at a few key ones here


Stress Concentrations

There are often "structural details" that cause the stress to go above the far-field applied value. These are stress concentrations

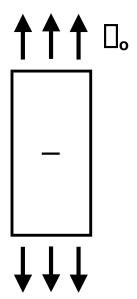
(K_T - stress concentration)

Example: a hole

Figure M5.4-1 Piece of material with a hole under stress

Stress "lines" can't go by hole but must go around it. This causes stress to concentrate at edge of hole

isotropic material: $K_T = 3$ = stress concentration at hole


failure occurs depending on the <u>notch</u> <u>sensitivity</u> of the material:

(Pure) Notch sensitive: failure at
$$\Box_o = \frac{\Box_{ult}}{K_{T_o}}$$
 perfectly sensitive to notch Notch insensitive: failure at $\Box_o = \Box_{ult}$ insensitive to presence of notch due to yielding

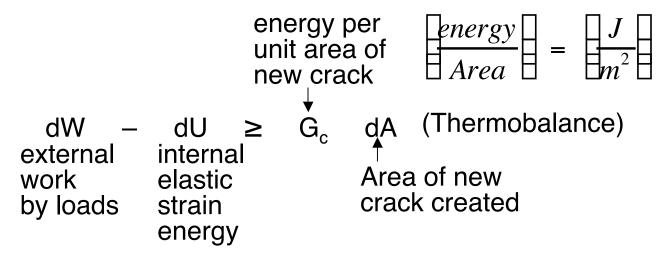
There are many types of notches. Can find associated stress concentrations via handbooks.

--> Consider the special case of a crack!

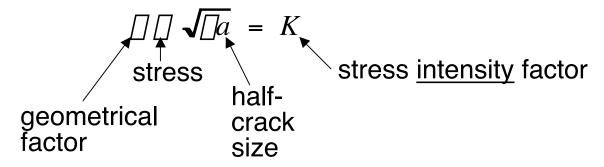
Figure M5.4-2 Piece of material with crack under stress

Solution shows $K_T = \infty$! (theoretically)

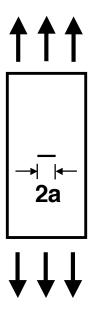
but there is strength. Need to resort to.....


Fracture Mechanics

In the presence of cracks, materials can "fast fracture".


This occurs if there is the proper energy balance:

energy released by = energy created in new fracture process crack surfaces


Griffith Criterion (1923)

This is generally expressed in the more usable form:

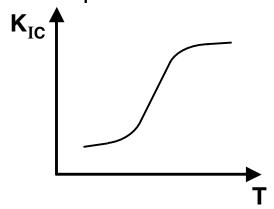
 \square = 1 for center crack:

At fracture, $\Box = \Box_f$, $K = K_c = \underline{critical}$ stress intensity factor (also known as $\underline{fracture}$ $\underline{toughness}$)

Note: Fracture depends on stress and on size of crack in structure

--> Note **modes** of crack propagation:

Mode I - Opening Mode Mode II - Sliding/Shearing Mode Mode III - Antiplane/Tearing Mode MIT - 16.003/16.004


- --> Uses of Fracture Mechanics
 - A. Find static strength for known crack size

$$\square_f = \frac{K_{\square}}{\sqrt{\square}a}$$

B. Determine critical crack size in a material

$$2a = \frac{2}{\Box} \left[\frac{K_{\Box c}}{\Box_{ult}} \right]^2$$

- --> Notes on K_{Ic}
 - "funny units"
 [stress] [length]^{1/2}
 - material parameter -- often determines use in tensile field
 - glass transition temperature and "Liberty boats"

K_c, G_c are material properties

Thus far, all the "failures" we've talked about have been due to the one-time application of load. However, we must also consider....

<u>Fatigue</u>

--> <u>Definition</u> of <u>fatigue</u> - "the tendency of a material to break under repeated stress"

Types of fatigue:

- 1. Low cycle fatigue
 - number of cycles less than 10⁴
 - for originally uncracked (macroscopically) materials
 - massive yielding/damage in each cycle
 - sometimes heat created from energy dissipation

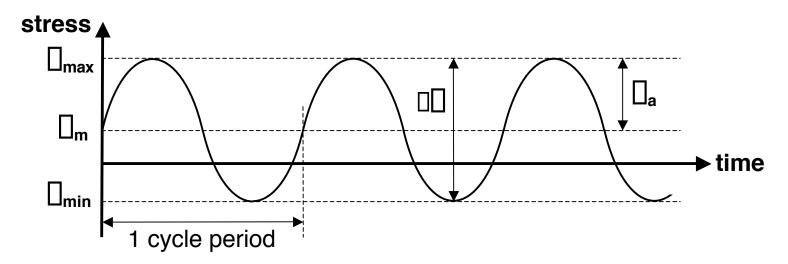
(Example: paper clip)

2. High cycle fatigue

- number of cycles greater than 10⁴
- for originally uncracked (macroscopically) materials
- at stresses well below yield/ultimate stress
- microscopic damage generated and accumulates overtime

(Example: axles, vibrating parts)

3. Damage growth from stress concentration


- based on fracture mechanics
- crack extends on each stress cycle

(Example: pressure vessels, Aloha 737)

--> Terminology of fatigue

Cyclic stress can be caused by any macroscopic loading (e.g. beam, rod, shaft)

Figure M5.4-3 Basic stress-time plot and associated fatigue terminology

 \square_{max} = maximum cyclic stress

 \square_{min} = minimum cyclic stress

$$\Box_a = \frac{\Box_{\text{max}} \Box \Box_{\text{min}}}{2} = \text{cyclic stress amplitude}$$

$$\Box_m = \frac{\Box_{\max} + \Box_{\min}}{2} = \text{mean stress}$$

$$\square\square = \square_{\max} \square \square_{\min} \qquad \qquad R = \frac{\square_{\min}}{\square_{\max}} = \text{stress ratio}$$

Note: only two needed to define loading

Also:

N = Number of cycles

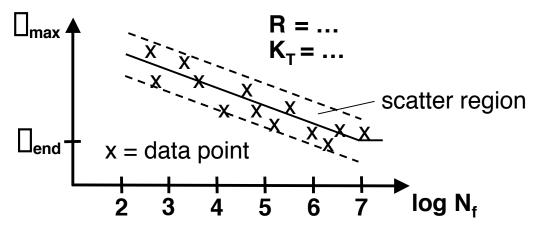
 N_f = Number of cycles to failure

cyclic frequency =
$$\frac{1}{\text{cyclic time}}$$
 [Hz]

--> Characterization of fatigue

There are two ways in which fatigue is characterized....

A. S-N Diagrams


"Classically", there is no macroscopic manifestation of fatigue until the last cycle at which it breaks (N_f)

So, fatigue of materials is explored experimentally:

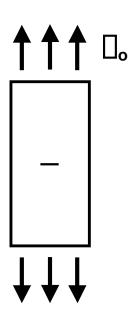
- 1. Define a stress ratio, R
- 2. Set a □_{max} value
- 3. Test material under defined stress cycle until failure

 ☐ N_f determined experimentally
- 4. Repeat steps 2 and 3 for multiple values of \square_{max}
- 5. Plot results on an "S-N diagram"

Figure M5.4-4 Typical S-N diagram

Much data collected.....

- Done for different values of stress concentration, K_T (N_f decreases as K_T increases)


- Substantial scatter (can be orders of magnitude)
 significant uncertainty
- Much lower strength at larger number of cycles (so plotted on log scale for cycles)
- Same materials/cases have stress endurance limits (no fatigue failure) generally defined at N > 10⁷
- Not defined for low cycles (generally < 10³ 10⁴)
- Will find S-N curves with different defining stress parameters (recall, two needed to define cycle; □_{max} and R used in Figure M5.4-4)
- Results depend on material, stress applied, stress concentration
 - --> Multiple mechanisms at work

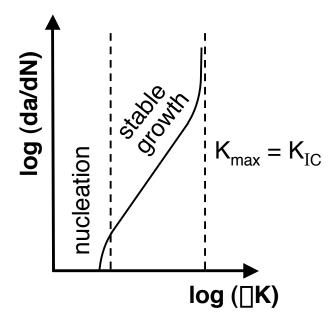
B. Crack Growth Rules

This approach is based on fracture mechanics and considers a macroscopic growth and its "self-similar" growth (growth maintaining the same shape)

Again, experimental data is key

- 1. Begin with a defined crack
- 2. Set at \square_{max} and \square_{min} values
- 3. Test material under desired stress cycle
- 4. Measure crack length (determine growth) at specified cycle
- 5. Plot data and correlate using a "growth law"

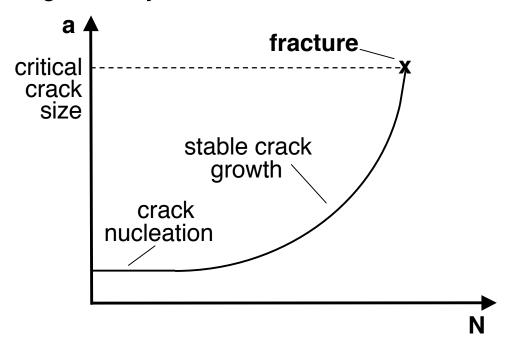
--> Most common: "Paris Law"


$$\frac{da}{dN} = A(\square K)^m$$

where ΔK is change in stress intensity factor:

$$\Box K = \Box \Box \sqrt{\Box a}$$

This is generally plotted on a log-log scale to get fits to determine A and n


Figure M5.4-5 Typical crack growth plot

This consists of three areas/phases:

- nucleation (crack is forming as initial crack is not macroscopic)
- stable growth region (governed by law)
- fast fracture (maximum stress intensity approaches critical stress intensity)

Plot this with regard to cycles:

start depends on initial a

--> **Design** for fatigue (cyclic loading)

Just as there are two ways that fatigue is characterized, there are two ways to design for fatigue/cyclic loading tied to the principle associated with the characterization

A. Safe-Life Design

- Assumes that initial part is perfect
- Life determined by time to initiate and propagate damage
- Based on S-N curves and "Miner's Rule"
- Uses life (scatter) factor of 4

--> Basics of Miner's Rule

- for a given stress cycle, damage equals 1 (D = 1) at failure cycle (N_f)
- if N cycles occur at this stress cycle, damage caused is ratio:

$$D = \frac{N}{N_f}$$

Damage can be added (for different types of stress cycles)

- When sum of damage equals 1, failure occurs
- Divide by 4 to get "safe life"
- Retire part when it reaches "safe life"

B. <u>Damage Tolerant Design</u>

- Assumes that cracks are present
- Uses inspection (visual, non-destructive) to determine maximum initial crack size
- Based on crack growth modes/laws to determine growth for sets of cyclic load
- Specify next inspection and maximum crack there should be
- Maintain experted crack size below critical crack size
- (often) use factor of 2 concerning number of cycles

Additional Items

Corrosion and the environment

Wear

Unit 5.4 (New) Nomenclature

```
a -- (half) crack length
G<sub>c</sub> -- energy per unit area of new crack
Hz -- Hertz (frequency)
K_{\square}-- stress intensity factor in mode I
K<sub>□</sub> -- critical stress intensity factor in mode I (a.k.a. "fracture toughness")
K<sub>⊤</sub> -- stress concentration
N -- number of stress cycle
N<sub>f</sub> -- number of stress cycles to failure
R -- stress ratio
U -- internal elastic strain energy
W -- external work
\Delta \square -- change in cyclic stress
☐ -- geometrical factor-in fracture mechanics equation
□<sub>a</sub> -- cyclic stress amplitude
☐<sub>end</sub> -- endurance limit stress
\square_{m} -- mean stress
□<sub>max</sub> -- maximum cyclic stress
□<sub>min</sub> -- minimum cyclic stress
```