

$$\frac{T_1}{T_0} = 2$$

$$\frac{T_{\text{max}}}{T_0} = 10$$

c) Where =
$$94.7\mu$$
 = $cp(T_2-T_1).9\mu$ = $cpT_0\left(\frac{T_{max}}{T_6}-\frac{T_1}{T_0}\right)\cdot\frac{1}{2}=\frac{4cpT_0}{T_0}$

e) shell wan solunce:
$$W_T = W_C$$
; $cp(T_2 - T_3) = cp(T_1 - T_0)$
 $T_3 = T_2 - T_1 + T_0 = T_{max} - T_1 + T_0$; $T_3 = 9T_0$

f)
$$\frac{P_6}{P_5} = \frac{P_4}{P_3}$$
 ad-my $\frac{T_6}{T_5} = \frac{T_4}{T_3}$, $T_6 = T_{max} = \frac{T_6}{T_2} = \frac{T_2}{T_3}$

also
$$\frac{T_4}{T_2} = \frac{T_0}{T_1} \left(\frac{\text{ad rev.}}{\text{procum}} \right)$$
 so $T_6 = \frac{T_0}{T_0} = \frac{T_0}{T_1} \cdot \frac{T_{\text{max}}}{qT_0} \cdot \overline{T_0} = \frac{50}{q} T_0$

Branton cycle (ideal) fremal efficiency - uk elemantay (arret (c) Cycles to find 7 for Brayton

dementery Cornetyde To Ta = Time 4 = 1 - TO W

concepts: 1st and zeed law of theme (6:55s)

$$\frac{\Delta S_{12}|_{p}}{\Delta S_{12}|_{V}} = \frac{cp \ln\left(\frac{T_{2}}{T_{1}}\right)}{cv \ln\left(\frac{T_{2}}{T_{1}}\right)} = \frac{cp}{cv} \rightarrow \frac{\Delta S_{12}|_{p}}{\Delta S_{12}|_{V}} = \gamma > 1 \text{ q.e.d.}$$

b)
$$P = \begin{cases} S(z) \\ S(z) \end{cases}$$

$$S(z) = \begin{cases} S(z) \end{aligned}$$

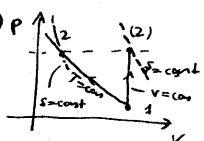
$$S$$

$$\frac{1}{S_1} = \frac{CP}{V} = \frac{V}{V} = \frac{dP}{V} = \frac{dV}{V} \rightarrow PV = cont$$

() P, -> P2 s'eon
$$\Delta S_{12}|_{T=cons} = (1-1) \Delta S_{12}|_{V=cons}$$

$$T = cone$$
: $AT = 0$ \rightarrow $Tds = -vdp$; $ds = -\frac{vp}{T}\frac{dp}{p} = -R\frac{dp}{p}$

$$V = const: dV = 0 \rightarrow TdI = cVdT$$


$$equ. of state$$

$$PV = RT \rightarrow dP + dV = dT$$

$$dI = cV \frac{dT}{T} = cV \frac{dP}{P}$$

$$dI = V \frac{dT}{T} = CV \frac{dP}{P}$$

$$\frac{\Delta S_{12}|_{\overline{1}}}{\Delta S_{12}|_{V}} = \frac{-R}{cV} = \frac{-(cp-cv)}{cV} = \frac{1-p}{q\cdot e\cdot 4}.$$

UE Fluids	Problem 1	Solution	·····	Spring 07	
1) A vortex will	be shed whenever	- [(t) change	ies & This o	cus	
at each kinh	of the zigrag	path.	(P=-F 50	me as before	
	of the zigrag $ \begin{array}{cccc} \hline \Gamma & \Gamma & \Gamma & \hline \Gamma & \Gamma & \Gamma & \hline \Gamma & \Gamma & \Gamma & \Gamma & \hline \Gamma & \Gamma & \Gamma & \Gamma & \Gamma & \hline \Gamma & \Gamma & \Gamma & \Gamma & \Gamma & \Gamma & \hline \Gamma & \Gamma \end{array} $ $ \begin{array}{cccc} \hline CCCHTS & ON & bottom & -2\Gamma & -2\Gamma & \hline \Gamma & \Gamma & \Gamma & \Gamma & \Gamma & \Gamma \end{array} $		Tv) Must	have $+\Gamma+\Gamma=$	- /7
before		after	4	$\sqrt{r_v} = -2\overline{r}$	
Mirror image c	occurs on bottom	kinks, with	$1/\sqrt{z} + 2\overline{f}$		
	₩+2F	+25	, 198 _{6 -} , 28 , 27 , 28 , 21 , 21 , 21 , 21 , 21 , 21 , 21	{= <u>-</u> 27/ℓ	
2) Averaged shee			********	CCCC CCCC Y=+2F/L	
The sheet space					
3) Superimpose	the relocities of	the two she	rets.		* <u> ***</u> * * **** **** ****
	f :		V=0		
3 + 8	-		I I	$Y = \frac{2\Gamma}{L}$	
->	-181		~ V= O		
The velocity be	tween the sheek	looks like 4	the let from	un engine,	
seen by stationar	tween the sheek y observer:			V /	
	nggangan garan an a			Viet	
In the frame of the jet is just	a velocity excess	me,		2	
4 4	Ÿ			V+Viet	