Problem T7
Concepts: entropy changes, list and and laws

Initial.:

$$
\begin{aligned}
& T_{A i}=300 \mathrm{~K} \\
& T_{B i}=100 \mathrm{~K} \\
& T_{C i}=300 \mathrm{~K}
\end{aligned}
$$

Final state: $T_{f}=150 \mathrm{~K}(A, B)$
all heat exchange in puari-ogisibrium manner
a) lIst lam: $d U=-d Q$

$$
Q_{A}=-\int_{T_{A_{i}}}^{T_{f}} C d T=C\left(T_{A_{i}}-T_{f}\right)
$$

$$
Q_{A}=150 \mathrm{MJ}
$$

b)

$$
\begin{aligned}
d u & =+d Q_{\text {net }} \\
Q_{B_{\text {nat }}} & =50 \mathrm{MJ}
\end{aligned}
$$

$$
Q_{B_{\text {Bet }}}=\int_{T_{B i}}^{T_{f}} C d T=C\left(T_{f}-T_{B i}\right)
$$

c) system: H.E. pens H.P. $\quad 0=Q_{A}-Q_{B n e}-Q_{c}$ (istrian)

$$
Q_{c}=C\left(T_{c_{f}}-T_{c_{i}}\right)
$$

$$
Q_{c}=Q_{A}-Q_{B N u}
$$

Find $T_{C f}=T_{C i}+\frac{Q_{A}-G_{B n i 2}}{C}$

$$
T_{c_{f}}=400 k
$$

d) $d S=\frac{d G}{T}$ (quari-aqui.!)

$$
\begin{aligned}
& \Delta S_{A}=C \ln \left(\frac{T_{f}}{T_{A i}}\right)=-693.2 \mathrm{~kJ} / \mathrm{K} \\
& \Delta S_{B}=C \ln \left(\frac{T_{f}}{T_{B i}}\right)=+405.5 \mathrm{~kJ} / \mathrm{K} \\
& \Delta S_{C}=C \ln \left(\frac{T_{f}}{T_{C_{i}}}\right)=+287.7 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \Delta S_{\text {total }}=\Delta S_{A}+\Delta S_{B}+\Delta S_{C}+\Delta S_{1+R}+\Delta S_{1 L E}, \quad \Delta S_{\text {teal }}=C \ln \frac{T_{f}^{2} \cdot T_{f}}{T_{A} \cdot T_{B ;} \cdot T_{i}} \\
& \Delta \text { Statue }=C \ln \frac{150^{2}-400}{300^{2}-100}=C \ln (1) \\
& \Delta S_{\text {total }}=01(\text { quin- },
\end{aligned}
$$

Problem T8
ideal gas
(1)
aliabatic
concepts: 1st (an CVform, enhops generation, T-s digyans
a) $T_{t_{1}}=T_{1}+\frac{c_{1}^{2}}{2 c_{p}} \quad T_{t_{1}}=311.25 \mathrm{~K}$
b) ist law $0=n_{t_{1}}-h_{t_{2}} \rightarrow T_{t_{2}}=T_{t_{1}} \quad T_{t_{2}}=311.25 \mathrm{~K}$
c) Gisss $T_{d s}=d 4-v d p^{0} ; \quad d s=\varphi \frac{d T}{T} \quad \Delta S_{12}=\varphi \ln \frac{T_{2}}{T_{1}}$

$$
T_{2}=T_{t_{2}}-\frac{c_{2}^{2}}{{ }^{2} \varphi}=311.2 \mathrm{~K} \rightarrow \Delta s_{12}=36.65 \mathrm{~J} / \mathrm{kg} \mathrm{~K}
$$

e) $\Delta s_{\text {tatal }}-\Delta s_{\mathrm{gum}}=\Delta s_{1-2}>0 \quad$ irreresisle ($T d s=1 \varphi-$ no neat transter)
f)

it revesisu

9) $\quad \frac{P_{25}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{8 / t-1}, \begin{gathered}\text { same } T_{2} \sin 4 \\ \left(T_{t_{2}}=T_{t_{25}}=T_{t_{1}}\right)\end{gathered} \frac{{c_{2}^{2}}_{29}^{29}}{}, \frac{P_{2 s}}{P_{1}}=1.137$

Problen Tq

Concepts: istlaw (CV) shafl powe seance adiasatio eff. has digrams

$$
\frac{P_{2}}{P_{1}}=\frac{P_{3}}{P_{4}}=1.5=\pi
$$

a)

shaff powe salance

$$
h_{3}-h_{4}=w_{5}=h_{2}-h_{1}
$$

b)

$$
\begin{aligned}
& w_{s}=h_{2}-h_{1}=c_{p} T_{1}\left(\pi^{\frac{r^{-1}}{r}}-1\right) \frac{1}{\eta_{\text {ad }}^{c}} \\
& \text { since } y_{a d}^{c}=\frac{h_{2 s}-h_{1}}{u_{2}-h_{1}} \\
& w_{5}=h_{3}-h_{4}=c p T_{3}\left(1-\frac{1}{\pi^{\frac{1-1}{2}}}\right) \cdot \eta_{a d}^{\top} \\
& T_{3}=T_{1} \frac{\pi^{\frac{\partial-1}{\alpha}}-1}{1-\pi^{\frac{1-2}{\gamma}}} \cdot \frac{1}{y_{\alpha d}^{c} y_{a}^{T}}=577.5 \mathrm{~K} \\
& T_{23}=T_{1} \pi^{t-1 / r} \\
& \text { since } y_{2 d}^{T}=\frac{4_{3}-4_{4}}{4_{3}-n_{45}} \\
& T_{4 S}=T_{3}\left(\frac{1}{\pi}\right)^{\frac{t-1}{t}}
\end{aligned}
$$

c) $T_{4}=T_{3}-\eta_{a d}^{T} T_{3}\left(1-\pi^{\frac{1-2}{r}}\right) \quad T_{4}=533.2 \mathrm{k}$
d) $P=\rho_{1} \dot{V}_{1} c p T_{1}\left(\pi^{\frac{t-1}{\gamma}}-1\right) \frac{1}{y_{\alpha-d^{c}}^{c}}$

$$
P=\frac{P_{1}}{R} \dot{V}_{1} p\left(\pi^{\frac{r-1}{r}}-1\right) \frac{1}{y_{\mathrm{ad}}} \quad P=6.8 \mathrm{~kW}
$$

since $S_{1}=\frac{P_{1}}{R T_{1}}$

VE Fluids
a) C.V. Analysis, $\quad F_{z}=L$
$\oiint p^{n} d A=0$ since $p=p_{\infty}=$ constant

$$
\begin{equation*}
\mathscr{Q} \rho(\vec{V} \cdot \hat{N}) W d A=\int_{1}+\int_{2}+I_{3}+I_{4} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{2}=0 \text { since } \vec{V} \cdot \hat{n}=0 \\
& \int_{3}=0 \text { since } \vec{V} \cdot \hat{n}=0 \\
& +\int_{5}=\dot{m} w_{\infty}+\dot{m}_{\text {rest }} \cdot 0=m w_{\infty}=\rho V A w_{\infty} \\
& p V A w_{\infty}+L=0 \Rightarrow w_{\infty}=\frac{-L}{\rho V A}
\end{aligned}
$$

$$
f_{1}=0 \text { since } w=0
$$

b) $w_{i}=\frac{w_{0}}{2}=\frac{-L}{2 \rho V A}, \quad \sqrt{\alpha_{i}}=\arctan \left(\frac{-w_{i}}{V}\right) \approx \frac{-w_{i}}{V}=\frac{L}{2 \rho V^{2} A}$

$$
D_{i}=\alpha_{i} L=\frac{L^{2}}{2 v^{2} A}
$$

c) Pick A so that our model matches the correct D_{i} :

$$
\frac{L^{2}}{2 \rho V^{2} A}=\frac{L^{2}}{\frac{1}{2} V^{2} \# b^{2} e} \Rightarrow A=\frac{\pi}{4} b^{2} e
$$

Area A is that of a circular cylinder of diameter $b \sqrt{e} \approx b$

UE Fuids PS6 Solution
a) $L=\int_{-\frac{b}{2}}^{b / 2} V_{\infty} \Gamma d y=\frac{1}{2} p V_{\infty} \Gamma_{0}$ graphically:
b) $\gamma=-\frac{d \Gamma}{d y}= \begin{cases}+2 \Gamma / b, & y>0 \\ -2 \Gamma / b, & y<0\end{cases}$

$$
\begin{aligned}
& \text { c) } \begin{aligned}
W\left(y_{0}\right) & =\int_{-b / 2}^{b / 2} \frac{-\gamma(y) d y}{4 \pi\left(y-y_{0}\right)} \\
W\left(y_{0}\right) & =\frac{-\Gamma_{0}}{2 \pi b} \int_{0}^{b / 2} \frac{d y}{y-y_{0}}+\frac{\Gamma}{2 \pi b} \int_{-b / 2}^{0} \frac{d y}{y-y_{0}} \\
& =\frac{-\Gamma_{0}}{2 \pi b}\left[\left.\ln \left|y-y_{0}\right|\right|_{0} ^{b / 2}+\left.\left.\frac{\Gamma_{0}}{2 \pi b}\right|_{\ln } ^{\ln }\left|y-y_{0}\right|\right|_{-b / 2} ^{0}\right. \\
\omega_{\left(y_{0}\right)} & =\frac{\Gamma_{0}}{2 \pi b}\left[\ln \frac{\left|y_{0}\right|}{\left|b / 2-y_{0}\right|}+\ln \frac{\left|y_{0}\right|}{\left|b / 2+y_{0}\right|}\right]
\end{aligned} .
\end{aligned}
$$

d) $V_{i}(y)=-\frac{W(y)}{V}$

$$
D_{i}=\int L_{\alpha} d y=\int \rho V \Gamma \alpha d y=\int_{-b / 2}^{b / 2}-p \omega d y
$$

Integrand is $\frac{d D_{i}}{d y}=-\rho W(y) \Gamma(y)$

$$
\frac{d D_{i}}{d y}=\left\{\begin{array}{l}
\frac{\rho \Gamma_{0}^{2}}{2 \pi b}\left[\ln \frac{|y|}{|b / 2-y|}+\ln \frac{|y|}{|b / 2 y|}\right]\left(1-\frac{2 y}{b}\right), y>0 \\
\left.\left.\frac{\rho \Gamma_{0}^{2}}{2 \pi b}\left[\ln \frac{|y|}{|b / 2-y|}+\ln \frac{|y|}{|b / 2+y|}\right] \right\rvert\, 1+\frac{2 y}{b}\right), y<0-b / h
\end{array}, D_{i}, y\right.
$$

Unified Engineering II

Problem S1 (Signals and Systems) SOLUTION

1. Find and plot the step response of the system

where $R=1 \Omega$, and $L=2 \mathrm{H}$.
Solution: Use the loop method to solve. Define the single loop current to be i_{a}. The sum of the voltage drops around the loop is

$$
0=-u(t)+R i_{a}+L \frac{d i_{a}}{d t}
$$

Plugging in numbers, and putting inhomogenous terms on the right, we have

$$
2 \frac{d i_{a}}{d t}+i_{a}=u
$$

Simplify by dividing by 2 to obtain

$$
\frac{d i_{a}}{d t}+\frac{1}{2} i_{a}=\frac{1}{2} u
$$

We want to find the step response, so assume that the input is $u(t)=\sigma(t)$. Then for $t \geq 0$,

$$
\frac{d i_{a}}{d t}+\frac{1}{2} i_{a}=\frac{1}{2}
$$

To find the response, must find the particular solution and the homogenous solution.
First, find the particular solution. Since the input is a constant, guess that the solution is a constant, $i_{p}(t)=c$. Since the time derivative of a constant is zero, the differential equation becomes

$$
\frac{1}{2} c=\frac{1}{2}
$$

and so $i_{p}(t)=c=1$.
Next, find the homogenous solution. The homogeneous equation is

$$
\frac{d i_{h}}{d t}+\frac{1}{2} i_{h}=0
$$

which has solution

$$
i_{h}(t)=A e^{-t / 2}
$$

for some constant A.
The total solution is

$$
i_{a}(t)=i_{p}(t)+i_{h}(t)=1+A e^{-t / 2}
$$

In order to satisfy the initial condition that $i_{a}(0)=0$, we must have that $A=-1$. Therefore,

$$
i_{a}(t)=1-e^{-t / 2}
$$

for $t \geq 0$, and zero otherwise. The output $y(t)$ is given by $y=u-i_{a} R$. Therefore, the step response is

$$
\begin{aligned}
g_{s}(t) & =\left(1-\left(1-e^{-t / 2}\right)\right) \sigma(t) \\
& =e^{-t / 2} \sigma(t)
\end{aligned}
$$

See the plot below:

2. For the input signal

$$
u(t)= \begin{cases}0, & t<0 \\ 2, & 0 \leq t<2 \\ -1, & t \geq 2\end{cases}
$$

find and plot the output $y(t)$, using superposition.
Solution: The input can be written as a sum of steps, as

$$
u(t)=2 \sigma(t)-3 \sigma(t-2)
$$

Therefore, by linearity and time invariance, the output can be written as

$$
y(t)=2 g_{s}(t)-3 g_{s}(t-2)
$$

Plugging in, we have

$$
y(t)=2 e^{-t / 2} \sigma(t)-3 e^{-(t-2) / 2} \sigma(t-2)
$$

This may be simplified by breaking the result down into regions:

$$
y(t)= \begin{cases}0, & t<0 \\ 2 e^{-t / 2}, & 0 \leq t<2 \\ 2 e^{-t / 2}-3 e^{-t / 2+1}, & t \geq 2\end{cases}
$$

See the plot below:

