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Unified Engineering Spring 2007
Fluids Problems F7+F10 (worth 2 Pset Q’s)

The profile drag of any real airfoil increases as chord Reynolds number is reduced. At the
low Reynolds numbers typical of small model aircraft (Re < 50000), a rough estimate of
profile drag of an unstalled airfoil is

cd = 5.0 Re−1/2

Airfoils in this flight regime are also limited to cℓ ≤ 0.6, otherwise they will stall.
Consider an elliptically-loaded wing with this airfoil, with a specified area S. This wing is
to lift some specified aircraft weight W , at some atmospheric properties ρ, ν.

a) Determine the average wing chord cavg as a function of the aspect ratio AR.

b) Determine average-chord Reynolds number Re as a function of AR and CL.

c) Determine the total drag coefficient CD as a function of AR and CL.

d) Assuming that CL = 0.6 (the maximum value just below stall), plot CL/CD over the
range AR = 10 . . . 30, for the following aircraft and atmospheric parameters:

S = 0.1 m2 W = 10 N

ρ = 1.23 kg/m3 ν = 1.45 × 10−5 m2/s

and graphically estimate the maximum CL/CD value, and the corresponding “optimum” AR.
Based on our finite-wing theory, wing performance as measured by CL/CD is expected to
improve with increasing AR. So why does the performance start to decrease if AR is increased
past the optimum value? Resolve this paradox.

e) Repeat part d) for a much lighter aircraft with W = 1 N. You may overlay the two plots.

f) The Albatross and the Arctic Tern have similar “design requirements”, namely long-
distance travel over the ocean, but the Arctic Tern is a very much smaller and lighter bird.
http://en.wikipedia.org/wiki/Image:Royal Albatross near Dunedin.jpg

http://en.wikipedia.org/wiki/Image:Havterne.jpg

Use your results to postulate an evolutionary reason for their rather different aspect ratios.



Unified Engineering Spring 2007
Fluids Problems F8

A wing is to have an elliptic circulation distribution.

Γ(y) = Γ0

√

1 −

(

2y

b

)2

The planform is to be a straight taper, with root and tip chords defined in terms of the
average chord cavg and the taper ratio r = ct/cr.

cr = cavg

2

1 + r
ct = cavg

2r

1 + r

a) Define the chord distribution c(y) in terms of cavg and r. Assuming cavg/b = 0.1, draw
the planforms for r = 0.8, 0.5, 0.2.

b) Determine the spanwise cℓ(y) distribution, and plot for r = 0.8, 0.5, 0.2.
Also determine the overall CL of the wings, and overlay as a horizontal line on the plot for
reference.
Note: Only the shape of the cℓ(y) curves is of interest. All scaling constants like Γ0, cavg,
etc. can be set to unity for plotting purposes.

c) Local stall occurs when the local cℓ at some spanwise location exceeds the cℓmax
value for

the airfoil. Which taper ratio appears to be most attractive for the purpose of giving the
largest stall margin for the wing?



Unified Engineering Spring 2007
Fluids Problems F9

Consider the following circulation distribution:

Γ(y) = [0.05 − 0.02(2y/b)]
√

1 − (2y/b)2

For numerical and plotting simplicity, we will assume ρ = 1, V
∞

= 1, b = 2.

a) Perform a trigonometric substitution and thus determine the equivalent Γ(θ).

b) Determine a suitable number of An coefficients which represent the Γ(θ) you obtained.

c) Determine the lift L, induced drag Di, and span efficiency e.

d) Determine the rolling moment Mroll, which is defined by

Mroll =
∫ b/2

−b/2
L′(y) y dy

Hint: Evaluate this in the θ coordinate.

e) Plot Γ(y) and the downwash angle αi(y).



Unified Engineering II Spring 2007

Problem S2 (Signals and Systems)

A system has step response given by

gs(t) =

{
0, t < 0
1− e−t, t ≥ 0

Find and plot the response of the system to the input

u(t) =

{
0, t < 0
1− e−2t, t ≥ 0

using Duhamel’s integral.



Unified Engineering II Spring 2007

Problem S3 (Signals and Systems)

Note: Please do not use official or unofficial bibles for this problem.

An airfoil with chord c is moving at velocity U with zero angle of incidence through
the air, as shown in the figure below:

U

The air is not motionless, but rather has variations in the vertical velocity, w. As the
airfoil flies through this gust field, the leading edge of the airfoil “sees” a variation in
the angle of attack. If w is small compared to U , then the angle of attack change
seen by the airfoil is α = w/U . Since the velocity profile varies in space, the angle of
attack seen by the airfoil is a function of time, α(t).

One might expect that the lift coefficient of the airfoil is just

CL(t) = 2πα(t)

However, the airfoil does not respond instantaneously as the airfoil encounters the
gust. If the airfoil encounters a “sharp-edged gust,”so that the apparent change in the
angle of attack is a step function in time,

α(t) = α0σ(t)

then the change in lift is given by

CL(t) = 2πα0ψ(t̄)

where t̄ = 2Ut/c is the dimensionless time. ψ(t̄) is the Küssner function, and is
the step response of the airfoil (neglecting multiplicative constants), if the input is
considered to be the vertical gust at the leading edge as a function of time, and the
output is considered to be the lift as a function of time. The Küssner function can
be approximated as

ψ(t̄) =

{
0, t̄ < 0
1− 1

2
e−0.13t̄ − 1

2
e−t̄, t̄ ≥ 0

Assuming that the airfoil acts as an LTI system, determine and plot the lift
coefficient, CL(t), and the gust velocity, w(t), for the following conditions:

c = 1 m
U = 1 m/s

w(t) =

{
0 m/s, t < 0 s
0.1 · (1− e−2t) m/s, t ≥ 0 s



Unified Engineering II Spring 2007

Problem S4 (Signals and Systems)

Note: This problem is similar to one given a couple years ago. Please try to do
this one without looking at bibles — the solution is instructive.

One of the benefits of the approach of using the superposition integral is that
you don’t have to guess the particular solution — it pops right out of the integral,
automatically. In some cases, the particular solution can be hard to guess, but easy
to find using the convolution integral. To see this, consider the system described by
the differential equation

d2

dt2
y(t) + 3

d

dt
y(t) + 2y(t) = u(t)

1. Find the step response of the system.

2. Take the derivative of the step response to find the impulse response.

3. Now assume that the input is given by

u(t) = e−2tσ(t)

Before doing part (4), try to find the particular solution by the usual method,
that is, by intelligent guessing. Be careful — it may not be what you expect!

4. Now find y(t) using the superposition integral. Is the particular solution what
you expected?
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