UE Fluids Problems $7+10$ Solution
a) $b \cdot c_{\text {arg }}=S, b=\frac{S}{C_{\text {arg }}}, \quad R=\frac{b^{2}}{S}=\frac{\left(S / \text { arg }^{2}\right.}{S} \rightarrow C_{\text {arg }}=\sqrt{S / R}$

c) $C_{D}=c_{d}+C_{i}=5.0\left[\frac{1}{1}\left(\frac{2 W}{\rho C_{2} R}\right)^{1 / 2}\right]^{-1 / 2}+\frac{c_{2}^{2}}{\pi R}$

$$
C_{0}\left(c_{L}, R\right)=5.0 \nu^{1 / 2}\left[\frac{p c_{C} R}{2 w}\right]^{1 / 4}+\frac{c_{L}^{2}}{\| A}
$$

dee)

d) The statement "performance improves with larger \mathbb{R}^{\prime} " addresses only $C_{D i}$ and assumes that C_{d} is constant. In reality, a larger R implies a smaller Gang and a smaller Re for a gives:

The smaller Re increases C_{d}, which eventually $\sum_{\text {small in }} \bigodot_{\text {large } A}$ overcomes the decreasing $C_{D i}$. This is basically a Re effect.
f) The heavier Albatross will have a larger optimum R because of the Re effect. Survival e evolution favors maximum efficiency for minimum energy consumption in flight. So each bird is liken to be closest to its optimize,
hence $A_{\text {Albatross }}>R_{\text {Tern }}$

DE Fluids Problem \& Solution
a) Linear interpolation between C_{r} and c_{z} :

$$
c(y)=c_{r}+\left(c_{z}-c_{r}\right)\left|\frac{2 y}{b}\right|=C_{\text {avg }} \cdot \frac{2}{1+r}\left[1+(r-1)\left|\frac{2 y}{b}\right|\right]
$$

b)

$$
\begin{aligned}
& \text { b) } \Gamma(y)=\frac{1}{2} c V C_{c}, \quad c_{l}(y)=\frac{2 \Gamma(J)}{C_{(j)} V_{\infty}}=\frac{\Gamma_{0}}{C_{\text {and }} V_{\infty}}(1+\eta) \frac{\sqrt{1-(29 b)^{2}}}{\left.1+(r-1) \left\lvert\, \frac{2}{b}\right.\right)} \\
& L=\frac{\pi}{4} p V_{\infty} \Gamma_{0} b, \quad C_{L}=\frac{L}{\frac{1}{2} V_{\infty}^{2} b c_{\text {arg }}}=\frac{\pi}{2} \frac{\Gamma_{0}}{C_{\text {arg }} V_{\infty}} \\
& \text { c) Local stall will occur first }
\end{aligned}
$$ at the peak $c_{l}(g)$ location.

Because the $r=0,5$ sing has the lowest C_{e} value at its peak, it will have the greatest stall margin.

UE Fluids Problem F9 Solution S67
a)

$$
\begin{aligned}
\frac{z_{y}}{b}=\cos \theta \rightarrow \Gamma & =[0.05-0.02 \cos \theta] \sqrt{1-\cos ^{2} \theta} \\
& =0.05 \sin \theta-0.02 \cos \theta \sin \theta \\
\Gamma(\theta) & =0.05 \sin \theta-0.01 \sin 2 \theta
\end{aligned}
$$

b) $\Gamma=2 b V_{\infty} \sum A_{n} \sin n \theta$ same
(*) Could aloe use Fourgon Auth iss Evaluate
By inspection, we must have $26 V_{\infty} A_{1}=0.05$

$$
26 V_{A} A_{2}=-0,01
$$

Setting $V_{\infty}=1, b=2$.

$$
A_{1}=0.0125, \quad A_{2}=-0.0025
$$

c)

$$
\begin{aligned}
& L=\frac{\pi}{4} V_{0} 6 A_{1}=\frac{\pi}{4} \cdot 1 \cdot 1 \cdot 2 \cdot 0.0125=0.01963 \\
& D_{i}=\pi 6^{2} \frac{1}{2} V_{A}^{2}\left[A_{1}^{2}+2 A_{1}^{2}\right]=\pi \cdot 4 \cdot \frac{1}{2} \cdot\left[0.015^{2}+2 \cdot 0.0025^{2}\right]=0.00106 \\
& E=\left[1+2\left(A_{2} / A_{1}\right)^{2}\right]^{-1}=\left[1+2 \cdot(0.002510 .0125)^{2}\right]^{-1}=0.9259
\end{aligned}
$$

d) $M_{\text {roll }}=\int_{-b / 2}^{b / 2} V_{\infty} \Gamma_{y} d y=\int_{0}^{\pi} \Gamma_{\infty} \cdot \underbrace{2 b V_{\infty}\left[A_{1} \sin \theta+A_{2} \sin 2 \theta\right]}_{\Gamma} \underbrace{\left(\frac{2}{2} \cos \theta\right)}_{y} \underbrace{\left(\frac{b}{2}\right.}_{-\infty} \sin \theta d \theta)$

$$
\begin{aligned}
& M_{\text {roll }}=\frac{1}{2} \rho V_{\infty}^{2} b^{3} \int_{0}^{\pi}\left[A_{1} \sin \theta+A_{2} \sin 2 \theta\right] \frac{1}{2} \sin 2 \theta d \theta \\
& M_{\text {rall }}=\frac{1}{2} p \nabla_{\infty}^{2} b^{3}\left[A_{1} O+A_{2} \frac{1}{2} \cdot \frac{\pi}{2}\right]=\frac{1}{2} p V_{0}^{2} b^{3} \cdot A_{2} \cdot \frac{\pi}{4}=-0.00785
\end{aligned}
$$

e) $\left.\alpha_{i}=A_{1} \frac{\sin \theta}{\sin \theta}+A_{2} \frac{\sin 2 \theta}{\sin \theta}=A_{1}+A_{1} 2 \cos \theta=A_{1}+A_{2} 2\left(\frac{29}{6}\right)=0.0125-0.005 \frac{29}{6}\right)$

Problem S2 (Signals and Systems) SOLUTION

A system has step response given by

$$
g_{s}(t)= \begin{cases}0, & t<0 \\ 1-e^{-t}, & t \geq 0\end{cases}
$$

Find and plot the response of the system to the input

$$
u(t)= \begin{cases}0, & t<0 \\ 1-e^{-2 t}, & t \geq 0\end{cases}
$$

using Duhamel's integral.
Solution: Duhamel's integral is

$$
y(t)=u(0) g_{s}(t)+\int_{0}^{\infty} g_{s}(t-\tau) u^{\prime}(\tau) d \tau
$$

For $\tau \geq 0$, we can write

$$
u^{\prime}(\tau)=2 e^{-2 \tau}
$$

Also, note that $u(0)=0$. Therefore, for $t \geq 0$,

$$
\begin{aligned}
y(t) & =\int_{0}^{t}\left(1-e^{-(t-\tau)}\right) 2 e^{-2 \tau} d \tau \\
& =2 \int_{0}^{t}\left(e^{-2 \tau}-e^{-t-\tau}\right) d \tau \\
& =2 \int_{0}^{t} e^{-2 \tau} d \tau-2 e^{-t} \int_{0}^{t} e^{-\tau} d \tau
\end{aligned}
$$

Note that the upper limit of the integral is t, since g_{s} is causal, and therefore $g_{s}(t-\tau)=$ 0 for $\tau>t$. Evaluating the integrals, we have

$$
\begin{aligned}
y(t) & =\left(1-e^{-2 t}\right)-2 e^{-t}\left(1-e^{-t}\right) \\
& =1-e^{-2 t}-2 e^{-t}+2 e^{-2 t} \\
& =1-2 e^{-t}+e^{-2 t}
\end{aligned}
$$

For $t<0, y(t)=0$, since there is no overlap between $g_{s}(t-\tau)$ and $u(\tau)$. Therefore,

$$
y(t)=\left(1-2 e^{-t}+e^{-2 t}\right) \sigma(t)
$$

Problem S3 (Signals and Systems) SOLUTION

SOLUTION: The step response of the airfoil (to unit change in angle of attack) is

$$
g_{s}(t)=2 \pi \psi(\bar{t})
$$

where $\bar{t}=2 U t / c$ is the dimensionless time, and $\psi(\bar{t})$ is the Küssner function. The Küssner function can be approximated as

$$
\psi(\bar{t})= \begin{cases}0, & \bar{t}<0 \\ 1-\frac{1}{2} e^{-0.13 \bar{t}}-\frac{1}{2} e^{-\bar{t}}, & \bar{t} \geq 0\end{cases}
$$

The problem statement gives the following conditions:

$$
\begin{aligned}
c & =1 \mathrm{~m} \\
U & =1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, $\bar{t}=2 t$, and the step response is then

$$
g_{s}(t)=2 \pi\left(1-\frac{1}{2} e^{-0.26 t}-\frac{1}{2} e^{-2 t}\right) \sigma(t)
$$

The angle of attack is

$$
\begin{aligned}
\alpha(t) & =w(t) / U \\
& =0.1 \cdot\left(1-e^{-2 t}\right) \sigma(t) \\
& =u(t)
\end{aligned}
$$

The lift coeeficient can then be found from Duhamel's integral. Since $u(0)=0$, we have

$$
\begin{aligned}
y(t)=C_{L}(t) & =\int_{0}^{t} g_{s}(t-\tau) u^{\prime}(t) d \tau \\
& =\int_{0}^{t} 2 \pi\left(1-\frac{1}{2} e^{-0.26(t-\tau)}-\frac{1}{2} e^{-2(t-\tau)}\right) 0.2 e^{-2 \tau} d \tau \\
& =0.4 \pi \int_{0}^{t}\left(e^{-2 \tau}-\frac{1}{2} e^{-0.26 t-1.74 \tau}-\frac{1}{2} e^{-2 t}\right) d \tau \\
& =0.4 \pi\left[\frac{1}{2}\left(1-e^{-2 t}\right)-\frac{1}{2 \cdot 1.74} e^{-0.26 t}\left(1-e^{-1.74 t}\right)-\frac{1}{2} t e^{-2 t}\right] \\
& =\pi\left(0.2-0.08506 e^{-2 t}-0.1149 e^{-0.26 t}-0.2 t e^{-2 t}\right) \\
& =0.62832-0.26722 e^{-2 t}-0.3611 e^{-0.26 t}-0.62832 t e^{-2 t}
\end{aligned}
$$

A plot of the response is shown below:

Problem S4 Solution (Signals and Systems)

1. Find the step response of the system

$$
\frac{d^{2}}{d t^{2}} y(t)+3 \frac{d}{d t} y(t)+2 y(t)=u(t)
$$

Solution. First, find the homogeneous solution, that is, the solution to

$$
\frac{d^{2}}{d t^{2}} y(t)+3 \frac{d}{d t} y(t)+2 y(t)=0
$$

If we assume an exponential solution of the form $y(t)=e^{s t}$, then the characteristic equation becomes

$$
s^{2}+3 s+2=0
$$

The roots are $s_{1}=-1, s_{2}=-2$. The general homogeneous solution is then

$$
y_{h}(t)=c_{1} e^{-t}+c_{2} e^{-2 t}
$$

Next, we find the particular solution, for the input $u(t)=1, t>0$. Guess that the solution is a constant, $y(t)=c$. Plugging into the d.e. yields

$$
2 c=1
$$

and therefore $c=1 / 2$. Therefore, the total solution is

$$
y(t)=y_{h}(t)+y_{p}(t)=\frac{1}{2}+c_{1} e^{-t}+c_{2} e^{-2 t}
$$

The inital conditions are $y(0)=y^{\prime}(0)=0$. Solving for the constants, $c_{1}=-1, c_{2}=1 / 2$. Therefore,

$$
g_{s}(t)=\left(\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}\right) \sigma(t)
$$

2. Take the derivative of the step response to find the impulse response.

Solution. Take the derivative using the chain rule for multiplication

$$
\begin{aligned}
g(t) & =\frac{d}{d t}\left[\left(\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}\right) \sigma(t)\right] \\
& =\left(e^{-t}-e^{-2 t}\right) \sigma(t)+\left(\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}\right) \delta(t)
\end{aligned}
$$

Since $\frac{1}{2}-e^{-t}+\frac{1}{2} e^{-2 t}=0$ at $t=0$,

$$
g(t)=\left(e^{-t}-e^{-2 t}\right) \sigma(t)
$$

3. Now assume that the input is given by

$$
u(t)=e^{-2 t} \sigma(t)
$$

Before doing part (4), try to find the particular solution by the usual method, that is, by intelligent guessing. Be careful - it may not be what you expect!
Solution. The obvious thing to do is to guess that

$$
y_{p}(t)=c e^{-2 t}
$$

But we already know that $e^{-2 t}$ is a solution to the homogeneouos equations. It can't be a particular solution! So instead, guess that

$$
y_{p}(t)=c t e^{-2 t}
$$

Plugging into the differential equation gives

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} y_{p}(t)+3 \frac{d}{d t} y_{p}(t)+2 y_{p}(t) & =-c e^{-2 t} \\
& =u(t)=e^{-2 t}
\end{aligned}
$$

Therefore, $c=-1$, and

$$
y_{p}(t)=-t e^{-2 t}
$$

4. Now find $y(t)$ using the superposition integral. Is the particular solution what you expected?

Solution. Perform the convolution integral,

$$
y(t)=\int_{-\infty}^{\infty} g(t-\tau) u(\tau) d \tau
$$

The result is

$$
\begin{aligned}
y(t) & =\int_{0}^{t}\left(e^{-(t-\tau)}-e^{-2(t-\tau)}\right) e^{-2 \tau} d \tau \\
& =\left(e^{-t}-e^{-2 t}-t e^{-2 t}\right) \sigma(t)
\end{aligned}
$$

Note that the correct particular solution is in the final result.

