Unified Engineering Problem Set week s Spring,2007

SOLUTIONS

M5.1 (a) There are three key sets of equation:

- Equilibrium Equations $\left(\frac{\partial \sigma_{m n}}{\partial x_{n}}+f_{m}=0\right)$ fires 3 equations

$$
\begin{aligned}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{13}}{\partial x_{3}}+f_{1}=0 \\
& \frac{\partial \sigma_{21}}{\partial x_{1}}+\frac{\partial \sigma_{22}}{\partial x_{2}}+\frac{\partial \sigma_{23}}{\partial x_{3}}+f_{2}=0 \\
& \frac{\partial \sigma_{31}}{\partial x_{1}}+\frac{\partial \sigma_{32}}{\partial x_{2}}+\frac{\partial \sigma_{33}}{\partial x_{3}}+f_{3}=0
\end{aligned}
$$

These are based on the fundamental of equilibrium

- Strain-Displacemant $\epsilon_{m n}=\frac{1}{2}\left(\frac{\partial u_{m}}{\partial x_{n}}+\frac{\partial u_{n}}{\partial x_{m}}\right)$ gives 6 equations

$$
\begin{aligned}
& \epsilon_{11}=\partial u_{1} / \partial x_{1} \\
& \epsilon_{22}=\partial u_{2} / \partial x_{2} \\
& \epsilon_{33}=\partial u_{3} / \partial x_{3}
\end{aligned}
$$

Page 2 of 14

$$
\begin{aligned}
& \epsilon_{21}=\epsilon_{12}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{2}}+\frac{\partial u_{2}}{\partial x_{1}}\right) \\
& \epsilon_{31}=\epsilon_{13}=\frac{1}{2}\left(\frac{\partial u_{1}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{1}}\right) \\
& \epsilon_{32}=\epsilon_{23}=\frac{1}{2}\left(\frac{\partial u_{2}}{\partial x_{3}}+\frac{\partial u_{3}}{\partial x_{2}}\right)
\end{aligned}
$$

There are bared on geometrical relationships and have the key assumption that strains are small such that angular changes are small. This can be wear ured/expressad as: $\cos \theta \approx 1 ; \sin \theta \approx \theta$.

- Stress-Strain $\quad \sigma_{m n}=E_{m n p q} \epsilon_{p q}$ giver 6 equations

$$
\begin{aligned}
& \sigma_{11}=E_{1111} \epsilon_{11}+E_{1122} \epsilon_{22}+E_{1133} \epsilon_{33}+2 E_{1123} \epsilon_{23}+2 E_{113} \epsilon_{13}+2 E_{1112} \epsilon_{12} \\
& \sigma_{22}=E_{1122} \epsilon_{11}+E_{2222} \epsilon_{22}+E_{2233} \epsilon_{33}+2 E_{2223} \epsilon_{23}+2 E_{223} \epsilon_{13}+2 E_{2212} \epsilon_{12} \\
& \sigma_{33}=E_{1133} \epsilon_{11}+E_{2233} \epsilon_{22}+E_{3333} \epsilon_{33}+2 E_{3323} \epsilon_{23}+2 E_{3313} \epsilon_{3}+2 E_{3312} \epsilon_{12} \\
& \sigma_{23}=E_{1123} \epsilon_{11}+E_{2223} \epsilon_{22}+E_{3323} \epsilon_{33}+2 E_{2323} \epsilon_{23}+2 E_{1323} \epsilon_{13}+2 E_{1223} \epsilon_{12} \\
& \sigma_{13}=E_{1113} \epsilon_{11}+E_{2213} \epsilon_{22}+E_{3313} \epsilon_{33}+2 E_{2313} \epsilon_{23}+2 E_{1313} \epsilon_{13}+2 E_{1213} \epsilon_{12} \\
& \sigma_{22}=E_{1112} \epsilon_{11}+E_{2212} \epsilon_{22}+E_{3312} \epsilon_{33}+2 E_{2312} \epsilon_{23}+2 E_{1312} \epsilon_{13}+2 E_{1212} \epsilon_{12}
\end{aligned}
$$

Thais is Arsed only on linear relationshiper between stressand outrun (o nd ir constitutive)
(b) Compatibility equations corn e form geometrical restrictions as manifested in the strain-displacement equations. Displacements must the contimourfunctioner of x_{1}, x_{2}, an $d x_{3}$. Thus, with three such functions, the sixestrais cannotbeindependent. The compatibility equations relate the strain fields to be compatible with the continuity of the displacements.
They are derived by using the strain-displacement equation, taking cross" derivatives and equating these.

They express geometrical restriction
(c) In using engineering equations, the form of the equations change (eeg. σ_{x} ratherthan $\sigma_{i 1}$), but the underlying fund amentabs and associated assumptions stay the same and the equation represent the vane thing. Only the notation changer.
One key change due to definition is that engineering shear strain is $2 \times$ tensorial shear strain, so this factor of 2 must be incorporated in all equations with engineering sheorstrains.

M5.2

(a) Boundary Condition si
Q) $x_{1}=0$, rod is fixed to support \Rightarrow displauments are zero

$$
\otimes x_{1}=0: u_{1}, u_{2}, u_{3}=0
$$

(NOTE: Could also express u_{2} on d u_{3} in polar cord cinater ar $u_{r} u_{\theta}=0$)
(a) $x_{1}=L$, overall force of $F=M g$ is applied over area $=\pi a^{2}$
$\delta_{0}: \quad \begin{aligned} & \sigma_{11}=F / A=\frac{M g}{\pi a^{2}} \text { a } x_{1}=L \\ & \sigma_{13} \sigma_{12}=0\end{aligned}$

A long all other surfaces, all stresses on surface are zero. Boundary surface is at So,

$$
\begin{aligned}
&(a) x_{2}=a \cos \theta, x_{3}=a \sin \theta \\
& 0^{\circ} \leq \theta \leq 366^{\circ} \\
& \sigma_{22}, \sigma_{33}, \sigma_{23}=0
\end{aligned}
$$

(NOTE: Couldalso do in polar courdinater $x_{a t @ r}=a, \sigma_{r r}, \sigma_{r \theta}=0$)
(b) ne glecting the mass of the rod \Rightarrow no body forcer

Apply the equilibrium equations. The only nonzero stress is σ_{11}, so.

$$
\begin{aligned}
& \frac{\partial \sigma_{11}}{\partial x_{1}}+f_{1}^{\prime}=0 \\
& \text { int grating } \Rightarrow \sigma_{11}=\text { constant }
\end{aligned}
$$

Apply the B.C.@ $x_{1}=L: \sigma_{11}=\frac{\mu g}{\pi a^{2}}$

$$
\Rightarrow \quad \sigma_{11}=M g / \pi a^{2}
$$

all other stresses are zero everywhere

To determine the stains, cere the stress -stain relationshiper. For an isotopic material, need longitudinal (young's) modulus, E, and Poisson's ratio, D.
with σ_{1} the only nonzero stress:

$$
\epsilon_{12}=\epsilon_{13}=\epsilon_{23}=0 \quad \text { (n shear strand }
$$

and: $\epsilon_{11}: \sigma_{11}$

$$
\begin{aligned}
& \epsilon_{22}=-\frac{\nu}{E} \sigma_{11} \\
& \epsilon_{33}=-\frac{\nu}{E} \sigma_{11} \\
& \Rightarrow \quad \epsilon_{11}=\frac{M g}{E \pi a^{2}} \\
& \epsilon_{22}=\epsilon_{33}=-\frac{\nu M g}{E \pi a^{2}}
\end{aligned}
$$

(c) To find the displacements, apply the strain-displaceenentrelations. The only primary consideration is u, so we use.

$$
\epsilon_{11}=\frac{\partial u_{1}}{\partial x_{1}}=\frac{M g}{E \pi a^{2}}
$$

intefrationgives:

$$
\begin{aligned}
& \text { ion gives: } \\
& u_{1}=\frac{M g}{E \pi a^{2}} x_{1}+C \quad \begin{array}{l}
\text { since no raid } \\
\text { in } x_{2} \text { and } x_{3}
\end{array}
\end{aligned}
$$

constant of integration sincenorariation

To find the constant, apply the B.C.:
(6) $x_{1}=0, u_{1}=0 \Rightarrow C=0$

This results in:

$$
u_{1}=\frac{M g}{E \pi a^{2}} x_{1}
$$

By definition of the model, u_{2} and u_{3} are 0 . However, note the slight inconsistency since ϵ_{22} and ϵ_{33} are nonzero. Using:

$$
\epsilon_{22}=\frac{\partial u_{2}}{\partial x_{2}}, \quad \epsilon_{33}=\frac{\partial u_{3}}{\partial x_{3}}
$$

and integrating giver:

$$
\begin{aligned}
& \epsilon_{22}=-\frac{v^{M g}}{E \pi a^{2}} x_{2}+C_{2} \\
& \epsilon_{33}=-\frac{v M g}{E \pi a^{2}} x_{3}+C_{3}
\end{aligned}
$$

Define the midpoint of the area ar the point of zero displacement (n oi: can dene any point ar reference point) to give $C_{2}=0, C_{3}=0$
(d) There are always inconsistencies in the model with regard to the u_{2} and u_{3} displacements. This is built into the model.
One must use the St. Venant's principle in the vicinity of the attachment to the support.
"Away" from this region, the model is valid. "Near" the region, σ_{11} may vary with x_{2} and x_{3} and otherstresser may be present.
(e) This is simply an extension of the model to allow area to vary with x. In the general care we replace the constant area we hove ($A: \pi \sigma^{2}$) with a general functional relationship to x_{1} : $\quad A=A\left(x_{1}\right)$
Then use this in the equationiused.

$$
\sigma_{11}=\frac{m_{g}}{A\left(x_{1}\right)}
$$

$\Rightarrow \sigma_{11}$ varies nita,
similar by

$$
\epsilon_{11}=\frac{m g}{\epsilon A\left(x_{1}\right)} \Rightarrow \text { and } \epsilon_{11} \text { vaniernith } x_{1}
$$

and or ϵ_{22} and ϵ_{33} :

$$
\epsilon_{22}=\epsilon_{33}=-\frac{v M g}{\epsilon A\left(x_{1}\right)}
$$

The expression for the displacement u, secomer more involved.

$$
u_{1}=\int t_{1,} d x_{1}=\int \frac{M g}{E A\left(x_{1}\right)} d x_{1}
$$

An expression for $A(x$, is needed to be specific, but that is not necessary in order to explain this.

Similarly, u_{2} and u_{3} vary with x, . This may make the in consistencies more important. It will basically depend on the rate that the area varies nth x : $\partial A / \partial x$, Since area controls all the results... it is in the derounator for all the key items. Finally, note that if σ_{11} is a function of $X_{1,}$ then $\frac{\partial \sigma_{11}}{\partial x_{1}}$ is nonzero The tort eghilitzinm equation is:

$$
\frac{\partial \sigma_{11}}{\partial x_{1}}+\frac{\partial \sigma_{12}}{\partial x_{2}}+\frac{\partial \sigma_{13}}{\partial x_{3}}=0
$$

since the first term is nonzero one or both other term must exist to ratisty equilibrium, so σ_{12} and or σ_{13} exist! \Rightarrow the model further falls apart.... not as applicable.

M5.3

$\frac{\text { CROSS-SECTON }}{\text { SX }}$

(a) The Boundary Condition donotchange it the boly force is taken into account. The sody force, f_{1}, is internal and doer not contribucte to the surtace/ bounday anditione. Soreprat:

* $x_{1}=0: u_{1}, u_{2}, u_{3}=0$
(a) $x_{1}=c, \sigma_{11}=\frac{a g g}{\pi a^{2}}, \quad \sigma_{12}=\sigma_{13}=0$
(a) allsurfoces; $\sigma_{33}, \sigma_{23}=0$

$$
\begin{aligned}
& x_{2}^{o f}=a \cos \theta \\
& x_{3}=a \sin \theta
\end{aligned}
$$

(b) We must now include the bu dy force:

$$
f_{1}=\frac{\rho g \text { Volume }}{\text { Volume }}
$$

in the equilibriner equation. So:

$$
\frac{\partial \sigma_{11}}{\partial x_{1}}+\rho g=0
$$

Integrating this gives:

$$
\sigma_{11}=-\rho g x_{1}+c
$$

Again, apply the B.C.@ $x_{1}=L, \sigma_{11}=\frac{M g}{\pi a^{2}}$

$$
\begin{aligned}
& \Rightarrow \frac{M g}{\pi a^{2}}=-\rho g L+c \\
& \Rightarrow c=\frac{M g}{\pi a^{2}}+\rho g l
\end{aligned}
$$

This gives:

$$
\underbrace{\sigma_{11}=\frac{M g}{\pi a^{2}}+\underbrace{\rho g\left(L-x_{1}\right)}}_{\text {new term }}
$$

(c) The strains are related through the souse equations ar in the previous case (basic stress-strain equations do not change). So we get:

$$
\begin{aligned}
& \epsilon_{11}=\frac{M g}{E \pi a^{2}}+\underbrace{\frac{\rho g}{E}\left(l-x_{1}\right)}_{\text {new term }} \\
& \epsilon_{22}=\epsilon_{33}=-\frac{\nu M g}{E \pi a^{2}}-\underbrace{\frac{\nu \rho g}{E}\left(L-x_{1}\right)}_{\text {new }} \text { term }
\end{aligned}
$$

(c) The displacement becomes more complicated as ϵ_{11} is a function of x_{1}. So:

$$
\begin{aligned}
& u_{1}=\int\left\{\frac{M g}{E \pi a^{2}}+\frac{\rho g}{E}\left(L-x_{1}\right)\right\} d x_{1} \\
& \Rightarrow u_{1}=\frac{M g}{E \pi a^{2}} x_{1}+\frac{\rho g}{E} L x_{1}-\frac{\rho g}{2 E} x_{1}^{2}+c_{1}
\end{aligned}
$$

Again, the B.C. gives $u_{1}=0$ ($x_{1}=0 \Rightarrow c_{1}=0$ So: $u_{1}=\frac{M g}{E \pi a^{2}} x_{1}+\frac{\rho g x_{1}}{E}\left(L-\frac{x_{1}}{2}\right)$
new term
Again, the model says u_{2} and u_{3} are gere, though there is aslight inconsistency since ϵ_{22} and ϵ_{33} are non zero.
(d) The same inconsistencies exist as in the previous case. However, their importance many be affected by the additional term and therefore the applicability of the model mong be affected. This will depend on the specific values for the various parameters
(e) For all the key variables, there are two contributions. One from the end mass $=\frac{\mathrm{Mg}}{\pi a^{2}}$ (souse ar before), and a new term due to the density if the $\operatorname{rod}=\rho g\left(L-x_{1}\right)$.
The mass of the rod becomes important when it is of similar magnitude os that of the package mass M. To do a rough companisor, one can lookat the maximum n value for the rod actituntion and compare it to the other:

$$
\text { gL vs. } \frac{M g}{\pi a^{2}}
$$

giving: pl vs. $\frac{M}{\pi a^{2}}$
to ascertain the \% contribution of the rod muss:
(f) The operative equation from port (b) is:

$$
\sigma_{1 \prime}=\frac{\mu g}{\pi a^{2}}+\rho g\left(L-x_{1}\right)
$$

Failure occurs whenthid reacher Get. of will be maximum af $x_{1}=0$, so:

$$
\sigma_{u l t}=\frac{\lambda g}{\pi a^{2}}+\rho g l
$$

Manipulating This to get an expression for the package mars that is to be maximized:

$$
\begin{aligned}
& \frac{M g}{\pi a^{2}}=\sigma_{\text {ult }}-\rho g L \\
& \Rightarrow M=\pi a^{2}\left(\frac{\sigma_{\text {ut }}}{g}-\rho L\right)
\end{aligned}
$$

πa^{2} is a constant for all cases, fo there are tho possible figures of merit. First, it the radius is a design variable:

$$
M=\pi a^{2}\left(\frac{\sigma_{\text {ult }}}{g}-\rho L\right)
$$

or if it is no st a de ain parameter:

$$
\frac{M \propto \frac{\sigma_{n e t}}{g}-p l}{\phi}
$$

propartual to
1.

2. To convolve, flip $g(t)$ slide left and right, multiply by ult), and find the area

There will be 3 important ranges:

$$
t<-1 \text { no overlap }
$$

$-1<t<1$ overlap from -1 to t $t>1$ overlap from -1 to 1

These are illustrated below:

3. The convolution is:

$$
t<-1 \quad y(t)=0
$$

$$
\begin{array}{rl}
-1<t<1 & y(t)=\int_{-1}^{t} e^{-2(t-\tau)} e^{-r} d \tau \\
& =e^{-2 t} \int_{-1}^{t} e^{r} d \tau \\
& =\left.e^{-2 t} e^{r}\right|_{t=-1} ^{t} \\
& =e^{-2 t}\left(e^{t}-e^{-1}\right) \\
& =e^{-t}-e^{-2 t-1} \\
\underline{t>1} & y(t)=\int_{-1}^{1} e^{-2(t-\tau)} e^{-\tau} \\
& =\left.e^{-2 t} e^{\tau}\right|_{t=-1} ^{1} \\
& =e^{-2 t}\left(e^{1}-e^{-1}\right)
\end{array}
$$

So,

$$
y(t)= \begin{cases}0, & t>-1 \\ e^{-t}-e^{-2 t-1}, & -1<t<1 \\ e^{-2 t}\left(e^{1}-e^{-1}\right), & t>1\end{cases}
$$

4. This part is very much like S6. See 56 solution for general approach. The result is

Problem S6 (Signals and Systems) SOLUTION

1. For the signal $u(t)$ shown below, and $g(t)=u(-t)$, find the convolution

$$
y(t)=g(t) * u(t)
$$

using the flip and slide method.

Solution. For each time t, draw $g(t-\tau), u(\tau)$, and the product $g(t-\tau) u(\tau)$. The value of $y(t)$ is just the area under the curve of $g(t-\tau) u(\tau)$. I wrote a little Matlab script to automate this:

```
% Define implicit function
u = @(t) (t>=-5)-2*(t>=-2)+2*(t>=-1)-(t>=0);
g = @(t) u(-t);
dt = 0.01;
tau = -12+dt/2:dt:12;
n=0;
for t = -5:5
n = n+1;
figure(n);
subplot(311)
plot(tau,g(t-tau))
axis([-11,11,-1.5,1.5])
xlabel('time, t')
ylabel('g(t-\tau)')
subplot(312)
plot(tau,u(tau))
axis([-11,11,-1.5,1.5])
xlabel('time, t')
ylabel('u(\tau)')
subplot(313)
plot(tau,g(t-tau).*u(tau))
axis([-11,11,-1.5,1.5])
```

```
    xlabel('time, t')
    ylabel('g(t-\tau)u(\tau)')
    drawnow
    print -depsc ['figure' num2str(n) '.eps']
    % the convolution integral
    area = sum(g(t-tau).*u(tau))*dt;
    disp(sprintf('y(%d) = %f',t,area))
end
```

The result is printed below; the plots follow.

```
y(-5) = 0.000000
y(-4) = 1.000000
y(-3) = 0.000000
y(-2) = 1.000000
y(-1) = 0.000000
y(0) = 5.000000
y(1) = 0.000000
y(2) = 1.000000
y(3) = 0.000000
y(4) = 1.000000
y(5) = 0.000000
```


Because u and g are piecewise cosntant, y will be pirecwise linear and continuous. Therefore, $y(t)$ is as shown below:

2. Using the results of part (1) and the LTI properties of the system G, what is the convolution

$$
y(t)=g(t) * u(t-T)
$$

Solution. Time invariance implies that the solution is just the solution of part (1) shifted to the right by T.
3. What feature of $y(t)$ would you use to identify the time T ?

Solution. For the unshifted $y(t)$, the peak of the function is quite pronounced at $t=0$. For the shifted function, the peak will be quite pronounced at $t=T$. therefore, we whould use the peak of the signal $y(t)$ to indicate the time delay T.
4. Can you explain why the right impulse response for G is a signal that has the same shape as $u(t)$, but time reversed?
Solution. To make $g(t-\tau)$ and $u(\tau)$ line up exactly when $t=0$, we must have therefroe that $g(-\tau)=u(\tau)$. This ensures that the highest peak in the convolution will occur when $t=0$ (or $t=T$ in the time-shifted case).

Problem S7 Solution (Signals and Systems)

1. The convolution is given by

$$
y(t)=g(t) * u(t)=\int_{-\infty}^{\infty} g(t-\tau) u(\tau) d \tau
$$

Note that $u(\tau)$ is nonzero only for $-3 \leq \tau \leq 0$, and $g(t-\tau)$ is nonzero only for $0 \leq t-\tau \leq 3$, that is, for $-3+t \leq \tau \leq t$. So there are four distinct regimes:
(a) $t<-3$
(b) $-3 \leq t \leq 0$
(c) $0 \leq t \leq 3$
(d) $t>3$

For cases (a) and (d), there is no overlap between $g(t-\tau)$ and $u(\tau)$, so $y(t)=0$. For case (b), the overlap is for $-3 \leq \tau \leq t$. So

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} g(t-\tau) u(\tau) d \tau \\
& =\int_{-3}^{t} \sin (-2 \pi(t-\tau)) \sin (2 \pi \tau) d \tau
\end{aligned}
$$

At this point, we have to do a little trig:

$$
\begin{aligned}
\sin (-2 \pi(t-\tau)) \sin (2 \pi \tau) & =\sin (2 \pi(\tau-t)) \sin (2 \pi \tau) \\
& =[\sin (2 \pi \tau) \cos (2 \pi t)-\cos (2 \pi \tau) \sin (2 \pi t)] \sin (2 \pi \tau) \\
& =\cos (2 \pi t) \sin ^{2}(2 \pi \tau)-\sin (2 \pi t) \cos (2 \pi \tau) \sin (2 \pi \tau) \\
& =\cos (2 \pi t) \frac{1-\cos (4 \pi \tau)}{2}-\sin (2 \pi t) \frac{\sin (4 \pi \tau)}{2}
\end{aligned}
$$

So the integral is given by

$$
\begin{aligned}
y(t) & =\int_{-3}^{t} \frac{\cos (2 \pi t)}{2} d \tau-\int_{-3}^{t} \frac{\cos (2 \pi t)}{2} \cos (4 \pi \tau) d \tau-\int_{-3}^{t} \frac{\sin (2 \pi t)}{2} \sin (4 \pi \tau) d \tau \\
& =\frac{\cos (2 \pi t)}{2}(t+3)-\left.\frac{\cos (2 \pi t)}{8 \pi} \sin (4 \pi \tau)\right|_{\tau=-3} ^{t}+\left.\frac{\sin (2 \pi t)}{8 \pi} \cos (4 \pi \tau)\right|_{\tau=-3} ^{t} \\
& =\frac{\cos (2 \pi t)}{2}(t+3)-\frac{\cos (2 \pi t)}{8 \pi} \sin (4 \pi t)+\frac{\sin (2 \pi t)}{8 \pi}[\cos (4 \pi t)-1]
\end{aligned}
$$

(As often happens with problems involving trig functions, there are other equivalent expressions.) For case (c), the region of integration is $-3+t \leq \tau \leq 0$. So

$$
\begin{aligned}
y(t) & =\int_{-3+t}^{0} \frac{\cos (2 \pi t)}{2} d \tau-\int_{-3+t}^{0} \frac{\cos (2 \pi t)}{2} \cos (4 \pi \tau) d \tau-\int_{-3+t}^{0} \frac{\sin (2 \pi t)}{2} \sin (4 \pi \tau) d \tau \\
& =\frac{\cos (2 \pi t)}{2}(3-t)-\left.\frac{\cos (2 \pi t)}{8 \pi} \sin (4 \pi \tau)\right|_{\tau=-3+t} ^{0}+\left.\frac{\sin (2 \pi t)}{8 \pi} \cos (4 \pi \tau)\right|_{\tau=-3+t} ^{0} \\
& =\frac{\cos (2 \pi t)}{2}(3-t)+\frac{\cos (2 \pi t)}{8 \pi} \sin (4 \pi t)-\frac{\sin (2 \pi t)}{8 \pi}[\cos (4 \pi t)-1]
\end{aligned}
$$

2. $y(t)$ is plotted below.

3. The maximum value of $y(t-T)$ occurs at time T. So I would use this center peak to identify the delay time T.
4. The adjacent peaks are nearly as tall as the center peak, so if noise were added to the signal, the tallest peak might not be the center peak, so we might use the wrong peak to determine the delay time.
5. The chirp signal of Problem S6 produces an ambiguity function with only one prominent peak. Therefore, the addition of noise should not make it difficult to accurately determine the delay time.
