
Unified Engineering II Spring 2007

Problem S8 Solution (Signals and Systems)

1. g(t) =
{

te−at, t ≥ 0
0, t < 0

Therefore,

G(s) =
∫ ∞

0
te−ate−st dt

Integrate by parts to obtain

G(s) = − t

s + a
e−(a+s)t

∣∣∣∣
∞

t=0

+
1

s + a

∫ ∞

0
e−ate−st dt

If Re[s] > −a, then the first term evaulates to 0; otherwise, it is undefined. The
integral is just the LT of e−atσ(t). Therefore,

G(s) =
1

s + a

∫ ∞

0
e−ate−st dt

=
1

(s + a)2
, Re[s] > −a

2. g(t) =
{

t2e−at, t ≥ 0
0, t < 0

Integrate by parts twice to obtain

G(s) =
2

(s + a)3
, Re[s] > −a

3. g(t) =
{

tne−at, t ≥ 0
0, t < 0 , where n is a positive integer.

In general,

G(s) =
n!

(s + a)n+1
, Re[s] > −a
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Unified Engineering II Spring 2007

Problem S7 Solution (Signals and Systems)

1.

E1

-

+

+

-

y(t)

R

u(t)

C

C

We can use impedance methods to solve for Y (s) in terms of U(s). Label ground and
E1 as shown. Then KCL at E1 yields

Cs(E1 − 0) +
(

Cs +
1
R

)
(E1 − U) = 0

Simplifying, we have (
2Cs +

1
R

)
E1 =

(
Cs +

1
R

)
U

Since we are finding the step response,

U(s) =
1
s
, Re[s] > 0

Plugging in numbers, we have

(0.2s + 0.5)E1(s) = (0.1s + 0.5)
1
s

Solving for E1, we have

E1(s) =
0.1s + 0.5

(0.2s + 0.5)s
=

0.5s + 2.5
s(s + 2.5)

The region of convergence must be Re[s] > 0, since the step response is causal, and
the pole at s = 0 is the rightmost pole. Using partial fraction expansions,

E1(s) =
1
s
− 0.5

s + 2.5

Therefore, gs(t) = y(t) = e1(t) is the inverse transform of E1(t), so

y(t) =
(
1− 0.5e−2.5t

)
σ(t)

The step response is plotted below:
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Normal differential equation methods are difficult to apply, because we cannot apply
the normal initial condition that e1(0) = 0. This is because the chain of capacitors
running from the voltage source to ground causes there to be an impulse of current at
time t = 0, and the voltages across the capacitors change instantaneously at t = 0. It
is possible to use differential equation methods, we just have to be more careful about
the initial conditions. However, Laplace methods are easier.
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2.

-

+

+

-

y(t)u(t)

E2E1

Again, use impedance methods, using the node labelling above. Then the node equa-
tions are

(C1s + G1)E1 − C1sE2 = G1U
−C1sE1 + [(C1 + C2)s + G2]E2 = 0

where G = 1/R. We can use Cramer’s rule to solve for E2:

E2(s) =

∣∣∣∣
C1s + G1 G1U(s)
−C1s 0

∣∣∣∣
∣∣∣∣

C1s + G1 −C1s
−C1s (C1 + C2)s + G2

∣∣∣∣

=
G1C1s

C1C2s2 + (G1C1 + G1C2 + G2C1)s + G1G2
U(s)

Since we are finding the step response,

U(s) =
1
s
, Re[s] > 0

Plugging in numbers, we have

Y (s) = E2(s) =
0.1s

0.06s2 + 0.35s + 0.25
1
s

=
5/3

s2 + 5.8333̄s + 4.1666̄

In order to find y(t), we must expand Y (s) in a partial fraction expansion. To do so,
we must factor the denominator, using either numerical techniques or the quadratic
formula. The result is

s2 + 5.8333̄s + 4.1666̄ = (s + 5)(s + 0.8333̄)

We can use the coverup method to factor Y (s), so that

Y (s) =
5/3

(s + 5)(s + 0.8333̄)
=
−0.4
s + 5

+
0.4

s + 0.8333̄

The region of convergence must be Re[s] > −0.8333̄, since the step response is causal,
and the r.o.c. is to the right of the right-most pole. Therefore, the step response is
given by the inverse transform of Y (s), so that

gs(t) =
(
−0.4e−5t + 0.4e−0.8333̄t

)
σ(t)

The step response is plotted below:
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Unified Engineering II Spring 2007

Problem S10 Solution (Signals and Systems)

1. Because the numerator is the same order as the denominator, the partial fraction
expansion will have a constant term:

G(s) =
3s2 + 3s− 10

s2 − 4

=
3s2 + 3s− 10
(s− 2)(s + 2)

= a +
b

s− 2
+

c

s + 2

To find a, b, and c, use coverup method:

a = G(s)|s=∞ = 3

b =
3s2 + 3s− 10

s + 2

∣∣∣∣
s=2

= 2

c =
3s2 + 3s− 10

s− 2

∣∣∣∣
s=−2

= 1

So

G(s) = 3 +
2

s− 2
+

1
s + 2

, Re[s] > 2

We can take the inverse LT by simple pattern matching. The result is that

g(t) = 3δ(t) +
(
2e2t + e−2t

)
σ(t)

2.

G(s) =
6s2 + 26s + 26

(s + 1)(s + 2)(s + 3)

=
a

s + 1
+

b

s + 2
+

c

s + 3
Using partial fraction expansions,

a =
6s2 + 26s + 26
(s + 2)(s + 3)

∣∣∣∣
s=−1

= 3

b =
6s2 + 26s + 26
(s + 1)(s + 3)

∣∣∣∣
s=−2

= 2

c =
6s2 + 26s + 26
(s + 1)(s + 2)

∣∣∣∣
s=−3

= 1

So
G(s) =

3
s + 1

+
2

s + 2
+

1
s + 3

, Re[s] > −1

The inverse LT is given by
(
3e−t + 2e−2t + e−3t

)
σ(t)
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3. This one is a little tricky — there is a second order pole at s = −1. So the partial
fraction expansion is

G(s) =
4s2 + 11s + 9
(s + 1)2(s + 2)

=
a

s + 1
+

b

(s + 1)2
+

c

s + 2

We can find b and c by the coverup method:

b =
4s2 + 11s + 9

s + 2

∣∣∣∣
s=−1

= 2

c =
4s2 + 11s + 9

(s + 1)2

∣∣∣∣
s=−2

= 3

So
G(s) =

a

s + 1
+

2
(s + 1)2

+
3

s + 2
To find a, subtract the second and third terms from above, to obtain

a

s + 1
= G(s)− 2

(s + 1)2
− 3

s + 2

=
4s2 + 11s + 9
(s + 1)2(s + 2)

− 2
(s + 1)2

− 3
s + 2

=
4s2 + 11s + 9− 2(s + 2)− 3(s + 1)2

(s + 1)2(s + 2)

=
s2 + 3s + 2

(s + 1)2(s + 2)

=
1

(s + 1)

Therefore,
G(s) =

1
s + 1

+
2

(s + 1)2
+

3
s + 2

, Re[s] > −1

The inverse LT is then

g(t) =
(
e−t + 2te−t + 3e−2t

)
σ(t)

4. This problem is similar to above. The partial fraction expansion is

G(s) =
4s3 + 11s2 + 5s + 2

s2(s + 1)2
=

a

s
+

b

s2
+

c

s + 1
+

d

(s + 1)2

We can find b and d by the coverup method

b =
4s3 + 11s2 + 5s + 2

(s + 1)2

∣∣∣∣
s=0

= 2

d =
4s3 + 11s2 + 5s + 2

s2

∣∣∣∣
s=−1

= 4

So
G(s) =

4s3 + 11s2 + 5s + 2
s2(s + 1)2

=
a

s
+

2
s2

+
c

s + 1
+

4
(s + 1)2
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To find a and c, subtract both terms from both sides, so that

a

s
+

c

s + 1
= G(s)− 2

s2
− 4

(s + 1)2

=
4s3 + 11s2 + 5s + 2

s2(s + 1)2
− 2

s2
− 4

(s + 1)2

=
4s3 + 11s2 + 5s + 2− 2(s + 1)2 − 4s2

s2(s + 1)2

=
4s3 + 5s2 + s

s2(s + 1)2
=

s(4s + 1)(s + 1)
s2(s + 1)2

=
4s + 1

s(s + 1)
=

1
s

+
3

s + 1

So
G(s) =

1
s

+
2
s2

+
3

s + 1
+

4
(s + 1)2

and
g(t) =

(
1 + 2t + 3e−t + 4te−t

)
σ(t)

5. G(s) can be expanded as

G(s) =
s3 + 3s2 + 9s + 12
(s2 + 4) (s2 + 9)

=
s3 + 3s2 + 9s + 12

(s + 2j)(s− 2j)(s + 3j)(s− 3j)

=
a

s + 2j
+

b

s− 2j
+

c

s + 3j
+

d

s− 3j

The coefficients can be found by the coverup method:

a =
s3 + 3s2 + 9s + 12

(s− 2j)(s + 3j)(s− 3j)

∣∣∣∣
s=−2j

= 0.5

b =
s3 + 3s2 + 9s + 12

(s + 2j)(s + 3j)(s− 3j)

∣∣∣∣
s=+2j

= 0.5

c =
s3 + 3s2 + 9s + 12

(s + 2j)(s− 2j)(s− 3j)

∣∣∣∣
s=−3j

= 0.5j

d =
s3 + 3s2 + 9s + 12

(s + 2j)(s− 2j)(s + 3j)

∣∣∣∣
s=+3j

= −0.5j

Therefore

G(s) =
0.5

s + 2j
+

0.5
s− 2j

+
0.5j

s + 3j
+
−0.5j

s− 3j
, Re[s] > 0

and the inverse LT is

g(t) = 0.5
(
e−2jt + e2jt + je−3jt − je3jt

)
σ(t)

This can be expanded using Euler’s formula, which states that

eajt = cos at + j sin at
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Applying Euler’s formula yields

g(t) = (cos 2t + sin 2t) σ(t)
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