Problem S8 Solution (Signals and Systems)

1. $g(t)= \begin{cases}t e^{-a t}, & t \geq 0 \\ 0, & t<0\end{cases}$

Therefore,

$$
G(s)=\int_{0}^{\infty} t e^{-a t} e^{-s t} d t
$$

Integrate by parts to obtain

$$
G(s)=-\left.\frac{t}{s+a} e^{-(a+s) t}\right|_{t=0} ^{\infty}+\frac{1}{s+a} \int_{0}^{\infty} e^{-a t} e^{-s t} d t
$$

If $\operatorname{Re}[s]>-a$, then the first term evaulates to 0 ; otherwise, it is undefined. The integral is just the LT of $e^{-a t} \sigma(t)$. Therefore,

$$
\begin{aligned}
G(s) & =\frac{1}{s+a} \int_{0}^{\infty} e^{-a t} e^{-s t} d t \\
& =\frac{1}{(s+a)^{2}}, \quad \operatorname{Re}[s]>-a
\end{aligned}
$$

2. $g(t)= \begin{cases}t^{2} e^{-a t}, & t \geq 0 \\ 0, & t<0\end{cases}$

Integrate by parts twice to obtain

$$
G(s)=\frac{2}{(s+a)^{3}}, \quad \operatorname{Re}[s]>-a
$$

3. $g(t)=\left\{\begin{array}{ll}t^{n} e^{-a t}, & t \geq 0 \\ 0, & t<0\end{array}\right.$, where n is a positive integer.

In general,

$$
G(s)=\frac{n!}{(s+a)^{n+1}}, \quad \operatorname{Re}[s]>-a
$$

Problem S7 Solution (Signals and Systems)

1.

We can use impedance methods to solve for $Y(s)$ in terms of $U(s)$. Label ground and E_{1} as shown. Then KCL at E_{1} yields

$$
C s\left(E_{1}-0\right)+\left(C s+\frac{1}{R}\right)\left(E_{1}-U\right)=0
$$

Simplifying, we have

$$
\left(2 C s+\frac{1}{R}\right) E_{1}=\left(C s+\frac{1}{R}\right) U
$$

Since we are finding the step response,

$$
U(s)=\frac{1}{s}, \quad \operatorname{Re}[s]>0
$$

Plugging in numbers, we have

$$
(0.2 s+0.5) E_{1}(s)=(0.1 s+0.5) \frac{1}{s}
$$

Solving for E_{1}, we have

$$
E_{1}(s)=\frac{0.1 s+0.5}{(0.2 s+0.5) s}=\frac{0.5 s+2.5}{s(s+2.5)}
$$

The region of convergence must be $\operatorname{Re}[s]>0$, since the step response is causal, and the pole at $s=0$ is the rightmost pole. Using partial fraction expansions,

$$
E_{1}(s)=\frac{1}{s}-\frac{0.5}{s+2.5}
$$

Therefore, $g_{s}(t)=y(t)=e_{1}(t)$ is the inverse transform of $E_{1}(t)$, so

$$
y(t)=\left(1-0.5 e^{-2.5 t}\right) \sigma(t)
$$

The step response is plotted below:

Normal differential equation methods are difficult to apply, because we cannot apply the normal initial condition that $e_{1}(0)=0$. This is because the chain of capacitors running from the voltage source to ground causes there to be an impulse of current at time $t=0$, and the voltages across the capacitors change instantaneously at $t=0$. It is possible to use differential equation methods, we just have to be more careful about the initial conditions. However, Laplace methods are easier.
2.

Again, use impedance methods, using the node labelling above. Then the node equations are

$$
\begin{aligned}
\left(C_{1} s+G_{1}\right) E_{1} & - & C_{1} s E_{2} & =G_{1} U \\
-C_{1} s E_{1} & + & {\left[\left(C_{1}+C_{2}\right) s+G_{2}\right] E_{2} } & =0
\end{aligned}
$$

where $G=1 / R$. We can use Cramer's rule to solve for E_{2} :

$$
\begin{aligned}
E_{2}(s) & =\frac{\left|\begin{array}{cc}
C_{1} s+G_{1} & G_{1} U(s) \\
-C_{1} s & 0
\end{array}\right|}{\left|\begin{array}{cc}
C_{1} s+G_{1} & -C_{1} s \\
-C_{1} s & \left(C_{1}+C_{2}\right) s+G_{2}
\end{array}\right|} \\
& =\frac{G_{1} C_{1} s}{C_{1} C_{2} s^{2}+\left(G_{1} C_{1}+G_{1} C_{2}+G_{2} C_{1}\right) s+G_{1} G_{2}} U(s)
\end{aligned}
$$

Since we are finding the step response,

$$
U(s)=\frac{1}{s}, \quad \operatorname{Re}[s]>0
$$

Plugging in numbers, we have

$$
Y(s)=E_{2}(s)=\frac{0.1 s}{0.06 s^{2}+0.35 s+0.25} \frac{1}{s}=\frac{5 / 3}{s^{2}+5.833 \overline{3} s+4.166 \overline{6}}
$$

In order to find $y(t)$, we must expand $Y(s)$ in a partial fraction expansion. To do so, we must factor the denominator, using either numerical techniques or the quadratic formula. The result is

$$
s^{2}+5.833 \overline{3} s+4.166 \overline{6}=(s+5)(s+0.833 \overline{3})
$$

We can use the coverup method to factor $Y(s)$, so that

$$
Y(s)=\frac{5 / 3}{(s+5)(s+0.833 \overline{3})}=\frac{-0.4}{s+5}+\frac{0.4}{s+0.833 \overline{3}}
$$

The region of convergence must be $\operatorname{Re}[s]>-0.833 \overline{3}$, since the step response is causal, and the r.o.c. is to the right of the right-most pole. Therefore, the step response is given by the inverse transform of $Y(s)$, so that

$$
g_{s}(t)=\left(-0.4 e^{-5 t}+0.4 e^{-0.833 \overline{3} t}\right) \sigma(t)
$$

The step response is plotted below:

Problem S10 Solution (Signals and Systems)

1. Because the numerator is the same order as the denominator, the partial fraction expansion will have a constant term:

$$
\begin{aligned}
G(s) & =\frac{3 s^{2}+3 s-10}{s^{2}-4} \\
& =\frac{3 s^{2}+3 s-10}{(s-2)(s+2)} \\
& =a+\frac{b}{s-2}+\frac{c}{s+2}
\end{aligned}
$$

To find a, b, and c, use coverup method:

$$
\begin{aligned}
& a=\left.G(s)\right|_{s=\infty}=3 \\
& b=\left.\frac{3 s^{2}+3 s-10}{s+2}\right|_{s=2}=2 \\
& c=\left.\frac{3 s^{2}+3 s-10}{s-2}\right|_{s=-2}=1
\end{aligned}
$$

So

$$
G(s)=3+\frac{2}{s-2}+\frac{1}{s+2}, \quad \operatorname{Re}[s]>2
$$

We can take the inverse LT by simple pattern matching. The result is that

$$
g(t)=3 \delta(t)+\left(2 e^{2 t}+e^{-2 t}\right) \sigma(t)
$$

2.

$$
\begin{aligned}
G(s) & =\frac{6 s^{2}+26 s+26}{(s+1)(s+2)(s+3)} \\
& =\frac{a}{s+1}+\frac{b}{s+2}+\frac{c}{s+3}
\end{aligned}
$$

Using partial fraction expansions,

$$
\begin{aligned}
& a=\left.\frac{6 s^{2}+26 s+26}{(s+2)(s+3)}\right|_{s=-1}=3 \\
& b=\left.\frac{6 s^{2}+26 s+26}{(s+1)(s+3)}\right|_{s=-2}=2 \\
& c=\left.\frac{6 s^{2}+26 s+26}{(s+1)(s+2)}\right|_{s=-3}=1
\end{aligned}
$$

So

$$
G(s)=\frac{3}{s+1}+\frac{2}{s+2}+\frac{1}{s+3}, \quad \operatorname{Re}[s]>-1
$$

The inverse LT is given by

$$
\left(3 e^{-t}+2 e^{-2 t}+e^{-3 t}\right) \sigma(t)
$$

3. This one is a little tricky - there is a second order pole at $s=-1$. So the partial fraction expansion is

$$
G(s)=\frac{4 s^{2}+11 s+9}{(s+1)^{2}(s+2)}=\frac{a}{s+1}+\frac{b}{(s+1)^{2}}+\frac{c}{s+2}
$$

We can find b and c by the coverup method:

$$
\begin{aligned}
& b=\left.\frac{4 s^{2}+11 s+9}{s+2}\right|_{s=-1}=2 \\
& c=\left.\frac{4 s^{2}+11 s+9}{(s+1)^{2}}\right|_{s=-2}=3
\end{aligned}
$$

So

$$
G(s)=\frac{a}{s+1}+\frac{2}{(s+1)^{2}}+\frac{3}{s+2}
$$

To find a, subtract the second and third terms from above, to obtain

$$
\begin{aligned}
\frac{a}{s+1} & =G(s)-\frac{2}{(s+1)^{2}}-\frac{3}{s+2} \\
& =\frac{4 s^{2}+11 s+9}{(s+1)^{2}(s+2)}-\frac{2}{(s+1)^{2}}-\frac{3}{s+2} \\
& =\frac{4 s^{2}+11 s+9-2(s+2)-3(s+1)^{2}}{(s+1)^{2}(s+2)} \\
& =\frac{s^{2}+3 s+2}{(s+1)^{2}(s+2)} \\
& =\frac{1}{(s+1)}
\end{aligned}
$$

Therefore,

$$
G(s)=\frac{1}{s+1}+\frac{2}{(s+1)^{2}}+\frac{3}{s+2}, \quad \operatorname{Re}[s]>-1
$$

The inverse LT is then

$$
g(t)=\left(e^{-t}+2 t e^{-t}+3 e^{-2 t}\right) \sigma(t)
$$

4. This problem is similar to above. The partial fraction expansion is

$$
G(s)=\frac{4 s^{3}+11 s^{2}+5 s+2}{s^{2}(s+1)^{2}}=\frac{a}{s}+\frac{b}{s^{2}}+\frac{c}{s+1}+\frac{d}{(s+1)^{2}}
$$

We can find b and d by the coverup method

$$
\begin{aligned}
& b=\left.\frac{4 s^{3}+11 s^{2}+5 s+2}{(s+1)^{2}}\right|_{s=0}=2 \\
& d=\left.\frac{4 s^{3}+11 s^{2}+5 s+2}{s^{2}}\right|_{s=-1}=4
\end{aligned}
$$

So

$$
G(s)=\frac{4 s^{3}+11 s^{2}+5 s+2}{s^{2}(s+1)^{2}}=\frac{a}{s}+\frac{2}{s^{2}}+\frac{c}{s+1}+\frac{4}{(s+1)^{2}}
$$

To find a and c, subtract both terms from both sides, so that

$$
\begin{aligned}
\frac{a}{s}+\frac{c}{s+1} & =G(s)-\frac{2}{s^{2}}-\frac{4}{(s+1)^{2}} \\
& =\frac{4 s^{3}+11 s^{2}+5 s+2}{s^{2}(s+1)^{2}}-\frac{2}{s^{2}}-\frac{4}{(s+1)^{2}} \\
& =\frac{4 s^{3}+11 s^{2}+5 s+2-2(s+1)^{2}-4 s^{2}}{s^{2}(s+1)^{2}} \\
& =\frac{4 s^{3}+5 s^{2}+s}{s^{2}(s+1)^{2}}=\frac{s(4 s+1)(s+1)}{s^{2}(s+1)^{2}} \\
& =\frac{4 s+1}{s(s+1)}=\frac{1}{s}+\frac{3}{s+1}
\end{aligned}
$$

So

$$
G(s)=\frac{1}{s}+\frac{2}{s^{2}}+\frac{3}{s+1}+\frac{4}{(s+1)^{2}}
$$

and

$$
g(t)=\left(1+2 t+3 e^{-t}+4 t e^{-t}\right) \sigma(t)
$$

5. $G(s)$ can be expanded as

$$
\begin{aligned}
G(s) & =\frac{s^{3}+3 s^{2}+9 s+12}{\left(s^{2}+4\right)\left(s^{2}+9\right)} \\
& =\frac{s^{3}+3 s^{2}+9 s+12}{(s+2 j)(s-2 j)(s+3 j)(s-3 j)} \\
& =\frac{a}{s+2 j}+\frac{b}{s-2 j}+\frac{c}{s+3 j}+\frac{d}{s-3 j}
\end{aligned}
$$

The coefficients can be found by the coverup method:

$$
\begin{aligned}
& a=\left.\frac{s^{3}+3 s^{2}+9 s+12}{(s-2 j)(s+3 j)(s-3 j)}\right|_{s=-2 j}=0.5 \\
& b=\left.\frac{s^{3}+3 s^{2}+9 s+12}{(s+2 j)(s+3 j)(s-3 j)}\right|_{s=+2 j}=0.5 \\
& c=\left.\frac{s^{3}+3 s^{2}+9 s+12}{(s+2 j)(s-2 j)(s-3 j)}\right|_{s=-3 j}=0.5 j \\
& d=\left.\frac{s^{3}+3 s^{2}+9 s+12}{(s+2 j)(s-2 j)(s+3 j)}\right|_{s=+3 j}=-0.5 j
\end{aligned}
$$

Therefore

$$
G(s)=\frac{0.5}{s+2 j}+\frac{0.5}{s-2 j}+\frac{0.5 j}{s+3 j}+\frac{-0.5 j}{s-3 j}, \quad \operatorname{Re}[s]>0
$$

and the inverse LT is

$$
g(t)=0.5\left(e^{-2 j t}+e^{2 j t}+j e^{-3 j t}-j e^{3 j t}\right) \sigma(t)
$$

This can be expanded using Euler's formula, which states that

$$
e^{a j t}=\cos a t+j \sin a t
$$

Applying Euler's formula yields

$$
g(t)=(\cos 2 t+\sin 2 t) \sigma(t)
$$

UNIFIED ENGINEERING

Problenllst-wEtk6 Spring. 2006
SOLUTIONS

MG. 1

First determine the relative magnitude of $q(x)$ is terms of P.
wearegiven:

$$
\left|\int_{0}^{3 L} g(x) d x\right|=|P|
$$

Need a functional expresciontor $q(x)$. Give it a value of q_{0} at $x=0$. It linearly topers to zero at $x=3 L$. 80:

Page 2 of 24

$$
q(x)=\left(\frac{3 L-x}{3 L}\right) q_{0}
$$

Check: $\Theta x=0: \quad G(\theta)=q 0$
(G) $x=3 c: q(3 L)=0$
$\frac{\partial q(x)}{\partial x}=-\frac{q_{0}}{3 L} \Rightarrow$ decreases linearly
\checkmark cheever
use this in the presses equation.'

$$
\begin{aligned}
&\left|\int_{0}^{3 L} \frac{q_{0}}{3 L}(3 L-x) d x\right|=P \\
& \Rightarrow\left.\left\lvert\, \frac{q_{0}}{3 L}\left(3 L x-\frac{x^{2}}{2}\right)\right.\right]_{0}^{3 L} \mid=P \\
& \Rightarrow\left|\frac{q^{0}}{3 L}\left(9 L^{2}-\frac{9 L^{2}}{2}\right)\right|=P \\
& \Rightarrow q_{0} \frac{3 L^{2}}{2}=P \quad \Rightarrow q_{0}=\frac{2 P}{3 L} \\
& \text { So: }\left|q_{0}(x)\right|=\frac{2 P}{3 L}\left(\frac{3 L-x}{3 L}\right)=2 P\left(\frac{3 L-x}{9 L^{2}}\right)
\end{aligned}
$$

mugnixde
with direction, $q(x)$ is downward, so:

$$
q(x)=-2 P\left(\frac{3 c-x}{9 c^{2}}\right)
$$

(a) Bran the tree Bocly Biagram:

Use equilibsinum:

$$
\begin{aligned}
& \sum F_{x}=0 \stackrel{+}{\Rightarrow} \Rightarrow+1_{A}=0 \\
& \sum F_{z}=0 \Phi_{+} \Rightarrow V_{A}+V_{B}+P-\underbrace{-\int_{0}^{3 L}(2 P)\left(\frac{3 L-x}{9 L^{2}}\right)}_{11-n i r} d x=0
\end{aligned}
$$

, 2ecullthis integrates to amaguitide of P nitha neganve urection. So:

$$
\begin{gathered}
V_{A}+V_{B}+P-P=0 \Rightarrow V_{A}+V_{B}=0 \\
\sum M_{A}=0\left(+\Rightarrow V_{B}(2 L)+P(3 L)-\int_{0}^{3 P} 2 P\left(\frac{3 L-x}{9 L^{2}}\right) \times d x=0\right. \\
\left.\Rightarrow V_{B}(2 L)+P(3 L)-\frac{2 P}{9 L^{2}}\left(\frac{3 C x^{2}}{2}-\frac{x^{3}}{3}\right)\right]_{0}^{3 L}=0 \\
\Rightarrow V_{B}(2 L)+P(3 L)-\frac{2 P}{9 L^{2}}\left(\frac{2 L L^{3}}{2}-\frac{27 L^{3}}{3}\right)=0 \\
2 V_{B}+3 P=2 P\left(\frac{1}{2}\right)=0 \\
8_{0}: 2 V_{B}=-2 P \quad \triangle V_{B}=-P
\end{gathered}
$$

frum setore $V_{A}=-V_{B}=+P$

Summarizing, the reaction are:

$$
\begin{aligned}
& H_{A}=0 \\
& V_{A}=+P \\
& V_{B}=-P
\end{aligned}
$$

b) This nee dr to be done in pantos sincethone are point loader (reaction) along the beam for $0 \leq x \leq 2 L$
there ir no loading in x or: $f(x)=0$

$$
q(x)=-2 p\left(\frac{3 c-x}{9 c^{2}}\right)
$$

use $\frac{d S}{d x}=q(x)$

$$
\begin{aligned}
\Rightarrow s(x) & =-\int 2 p\left(\frac{3 c-x}{q c^{2}}\right) d x \\
& =-\frac{2 p}{9 c^{2}}\left(3 c x-\frac{x^{2}}{2}\right)+C_{1}
\end{aligned}
$$

We asoondery undition to get the castor of n tegration.
look at $x=0+$

$$
\begin{aligned}
& \dot{q}^{S} \phi S\left(0^{+}\right) \quad \sum F_{7}=0 \varphi_{+} \Rightarrow V_{A}=S\left(0^{+}\right) \\
& V_{A} \text { so } S\left(0^{+}\right)=V_{A}=+P=C_{1} \Rightarrow C_{1}=+P
\end{aligned}
$$

giving $S(x)=\frac{2 P}{9 L^{2}}\left(\frac{x^{2}}{2}-3(x)+P\right.$
Now ure $\frac{d M}{d x}=S$

$$
\begin{aligned}
\Rightarrow M(x) & =\int\left\{\frac{2 P}{g^{2}}\left(\frac{x^{2}}{2}-3(x)+P\right\} d x\right. \\
& =\frac{2 P}{q^{2}}\left(\frac{x^{3}}{6}-\frac{3}{2}\left(x^{2}\right)+P_{x}+C_{2}\right.
\end{aligned}
$$

Afoun, are a boun dany condition.
(a) $x=0, M=0$

$$
\Rightarrow C_{2}=0
$$

Sum manizinf:

$$
\begin{aligned}
& \text { for } 0 \leq x \leq 2 L \\
& F(x)=0 \\
& q(x)=-\frac{2 P}{9 c^{2}}(3 c-x) \\
& r(x)=\frac{2 P}{9 c^{2}}\left(\frac{x^{2}}{2}-3 c x\right)+P \\
& M(x)-\frac{2 P}{9 c^{2}}\left(\frac{x^{3}}{6}-\frac{3}{2}\left(x^{2}\right)+P x\right.
\end{aligned}
$$

\rightarrow hove on to $2 C \leq x \leq 3 L$
There is sxill no eradigini x, so: $F(x)-0$ distrisuted $g(x)=-2 p\left(\frac{3 c-x}{9 c^{2}}\right)$
so using $\frac{d S}{d x}=f(x)$
we aganfat:

$$
f(x)=\int g(x)=-\frac{2 P}{9 l^{2}}\left(3 C x-\frac{x^{2}}{2}\right)+C_{3}
$$

but there are different boundary andition in this sector. Go to the tip $(x=3 c)$ and tribeacut giving a "negative" face:

$$
\begin{aligned}
& S(x) \not q^{\circ p} \\
& 3 \mathrm{~L} \longrightarrow \\
& \sum F_{z}=0 \varphi_{+} \Rightarrow S(3 l)=-\nu
\end{aligned}
$$

wing this in our expression:

$$
\begin{aligned}
5(3 L)=-P & =-\frac{2 P}{q c^{2}}\left(q L^{2}-\frac{q L^{2}}{2}\right)+C_{3} \\
\Rightarrow-P & =-P+C_{3} \Rightarrow C_{3}=0
\end{aligned}
$$

So: $\delta(x)=\frac{2 P}{9 L^{2}}\left(\frac{x^{2}}{2}-3(x)\right.$
agoinuse $\frac{d M}{d x}=S(x)$

$$
\begin{aligned}
\Rightarrow M(x) & =\int \delta(x) d x \\
& =\frac{2 P}{9 C^{2}}\left(\frac{x^{3}}{6}-\frac{3}{2}\left(x^{2}\right)+C_{4}\right.
\end{aligned}
$$

Going to thatip $(x=3 C), N=0$

$$
\begin{aligned}
& \text { Usingtuis: } \\
& O=M(3 L)=\frac{2 P}{9 L^{2}}\left(\frac{27 L^{3}}{6}-\frac{27 L^{3}}{2}\right)+C_{4} \\
& \Rightarrow 0=2 P(-L)+C_{4} \Rightarrow C_{4}=2 P L
\end{aligned}
$$

giving: $M(x)=\frac{2 P}{9 l^{2}}\left(\frac{x^{3}}{6}-\frac{3}{2} l x^{2}\right)+2 P L$

Summarizing: for $2 L \leq x \leq 3 L$

$$
\begin{aligned}
& F(x)=0 \\
& g(x)=-\frac{2 P}{9 L^{2}}(3 L-x) \\
& S(x)=\frac{2 p}{9 L^{2}}\left(\frac{x^{2}}{2}-3 L x\right) \\
& M(x)=\frac{2 p}{9 L^{2}}\left(\frac{x^{3}}{6}-\frac{3}{2} L x^{2}\right)+2 P L
\end{aligned}
$$

There are no point morrents applied, so the solutions for $M(x)$ for the tho segments mort be equent at $x=2 c$. Oft C CK:

$$
\begin{gather*}
\frac{2 P}{9 C^{2}}\left(\frac{8 L^{3}}{6}-\frac{12 L^{3}}{2}\right)+2 P L \stackrel{?}{=} \frac{2 P}{9 C^{2}}\left(\frac{8 L^{3}}{6}-\frac{12 L^{3}}{2}\right)+2 P L \\
\binom{\left.=2 P\left(\frac{8 L}{54}-\frac{36 L}{54}\right)+2 P L\right)}{=+25} \tag{-S}\\
=15 L
\end{gather*}
$$

Noudram true ese. Inslatching, use the relations of the derivaxuer to at a shupe. Calculate ens point values to bin. Anat recall that point loads course equal jumps in shear (account for proper direction and sign).
$F(x)=0$ evenguthers... no nest to plot
Coding:

$S(x)$ Bomondryture

$$
\begin{gathered}
\text { Point forces } \\
V_{A}=+P @ x=0 \\
V_{B}=-P @ x=2 R \\
P \oplus x=3 L
\end{gathered}
$$

(c) Gutthe beam @ $x=1$:

$$
\begin{aligned}
& \text { use equilitinum: } \\
& \Sigma F_{x}=0 \stackrel{F}{\rightarrow} \Rightarrow F(L)=0 \quad \Delta \text { cheels } \\
& \begin{array}{l}
\sum F_{x}=0 \xrightarrow{t} \Rightarrow F(L)=0 \\
\sum F_{z}=0 \varphi_{+} \Rightarrow P-\int_{0}^{L} \frac{2 P}{9 c^{2}}(3(-x) d x-S(L)=0
\end{array} \\
& \Rightarrow p+\frac{2 P}{9 c^{2}}\left(\frac{x^{2}}{2}-3(x)\right]_{0}^{L}=S(L) \\
& \text { 50: } S(L)=p+\frac{2 p}{9 l^{2}}\left(\frac{t^{2}}{2}-3 L^{2}\right) \\
& =\frac{4}{9} P \\
& \text { Cheek: } S(x)=\frac{2 P}{q c^{2}}\left(\frac{x^{2}}{2}+3(x)+P\right. \\
& \begin{aligned}
\Rightarrow S(L) & =\frac{2 P}{9 c^{2}}\left(\frac{L^{2}}{2}-3 c^{2}\right)+P \\
& =\frac{4}{9} P
\end{aligned} \\
& =\frac{4}{9} P \\
& \checkmark \text { cheeler }
\end{aligned}
$$

Enally:

$$
\sum M_{L}=0 C+P L+\int_{0}^{L} \frac{2 P}{9 C^{2}}(3 L-x)(\underbrace{(L-x) d}_{A}+M(L)=0
$$

* Note: manent arm form point L is ($L-x$)
(a) $x=6$, monent an- O.

Page 10 of 24

$$
\begin{aligned}
\Rightarrow M(L) & =P L-\frac{2 P}{9 L^{2}} \int_{0}^{L}\left(3 L^{2}-4 C x+x^{2}\right) d x \\
& \left.=P L-\frac{2 P}{9 L^{2}}\left(3 L^{2} x-2 L x^{2}+\frac{x^{3}}{3}\right)\right]_{0}^{L} \\
& =P L-\frac{2}{9} P L\left(3-1+\frac{1}{3}\right) \\
& =P L-\frac{2}{9} P L\left(\frac{4}{3}\right)=P L\left(1-\frac{8}{27}\right)=\frac{19}{27} P L \\
C h e c k & : M(x) \\
& \Rightarrow M(L)
\end{aligned}
$$

ALL CHECK

(a) firot draw an FBD (Free Body Dingram):

Use eqnilibrium:

$$
\begin{aligned}
\sum F_{x}=0 \rightarrow & \Rightarrow H_{A}=0 \\
\sum F_{z}=0 \quad \varphi_{+} & \Rightarrow V_{A}+V_{B}-P=0 \\
\sum M_{A}=0 \leftrightarrow & \Rightarrow-P(23.5 \mathrm{~m})+V_{B}(47 \mathrm{~m})=0 \\
& \Rightarrow V_{B}=P / 2
\end{aligned}
$$

ase inpreni ar

$$
\Rightarrow V_{A}=P / 2
$$

This maker sense sse Kresge is configuration is sym metic, so the reactions should be symmetric.

Summariziy:

$$
\begin{aligned}
& H_{A}=O \\
& V_{A}=P / 2 \\
& V_{B}=P / 2
\end{aligned}
$$

(b) We will anolyzethis in trosections: "prior to the load $(x<0)$ and afferthe load $(x>0)$ [on each side of the center of the tronftrace.
As we wit the Kresge arched beam we mote that the reactions have an angelo then since thetongert to the beam is not parallel to the x-axis except at the peak:

NUTF: Shear and axial force and perpendicular codporallel to the cut bear-fau (90° to itstongent) atony point

The key is to do sone gemestry and determine the x - and 7 - components (viathe angle θ) and any point x projected onto the bean:

The tangent line will be perpendicular to the intersection of the radius with the an hedream. so the angle θ is the same ar that betweerthe z-axis and the radial line to the point on the - arched beam.

Finally thedistonce from the z-axis to the arched beamporrllel to the x-axis is x and is equal to $R \sin \theta$. So:

$$
\begin{aligned}
& x=R \sin \theta \Rightarrow \sin \theta=\frac{x}{R} \\
& \Rightarrow \theta=\sin ^{-1} \frac{x}{R}
\end{aligned}
$$

Now lookat the beaun resulter to:

Cinsider $F(x)$ and $s(x)$ and rervele componerts aloug x and z :

$$
\begin{aligned}
& F_{x}(x)=F(x) \cos \theta \\
& F_{z}(x)=F(x) \sin \theta \\
& S_{x}(x)=S_{x} \sin \theta \\
& S_{(x)} S_{z}(x)=S(x) \cos \theta
\end{aligned}
$$

Now use equi librium. We'll start afterthe load (unidpoint)

$$
0<x<23.5 \mathrm{~m}
$$

Page 15 of 24

$$
\begin{aligned}
& \Sigma F_{x}=0 \xrightarrow{t} \Rightarrow F(x) \cos \theta-S(x) \sin \theta=0 \\
& \Rightarrow F(x)-S(x) \tan \theta \\
& \Sigma F_{z}=0 \phi+ \Rightarrow \frac{P}{2}-P-S(x) \cos \theta-F(x) \sin \theta<0 \\
& f_{0}:-S(x) \cos \theta-S(x) \frac{\sin ^{2} \theta}{\cos \theta}=\frac{P}{2} \\
& \Rightarrow S(x)\left[\cos ^{2} \theta+\sin ^{2} \theta\right]=-\frac{P}{2} \cos \theta \\
& \text { sining } S(x)=-\frac{P}{2} \cos \theta
\end{aligned}
$$

using in what we found for $F(x)$.

$$
F(x)=-\frac{P}{2} \sin \theta
$$

Now the moment:
Fake it about the point of ant mi the Kresge beam so one doer not need to mong about $F(x)$ and $S(x)$. The women arm forte reaction is $(x+23.5 \mathrm{~m})$; for the applied load if is x :

$$
\begin{aligned}
& \text { load if is } x: \\
& \sum M_{x_{\text {cut }}}=\left(+\Rightarrow-\frac{P}{2}(23.5 m+x)+P_{x}+M(x)=0\right. \\
& f_{0}:-\frac{P_{x}}{2}+P(11.75 m)=M(x)
\end{aligned}
$$

If we consider the case for the other side of the center point: $-23.5 m<x<0$ we can use symuretryand draw:

The rnitihing of direction including in the angle will account for many of thechenges. However, we need to not doubly account for the negative aspect in using $\sin \theta$ since for $x<0$, $\sin \theta<0$ and the picture above actually depicts | $\sin \theta \mid$. Account for this in the summations

$$
\begin{aligned}
& \sum F_{x}=0 \xrightarrow{\rightarrow} \Rightarrow-F(x) \cos \theta+S(x) \sin \theta=0 \\
& \Rightarrow F(x)=S(x) \tan \theta \\
& \sum F_{7}=0 \quad \varphi_{+} \Rightarrow \frac{P}{2}-p+S(x) \cos \theta+F(x) \sin \theta=0 \\
& f_{0}: S(x) \cos \theta+S(x) \frac{\sin ^{2} \theta}{\cos \theta}=\frac{p}{2} \\
& \Rightarrow S(x)=\frac{p}{2} \cos \theta
\end{aligned}
$$

Page 17 of 24
with whut we found for $F(x)$:

$$
F(x)=\frac{p}{2} \sin \theta
$$

finully:

$$
\begin{aligned}
\sum M_{x_{\text {ut }}} & =0 \quad\left(t \Rightarrow M(x)+P(-x)-\frac{P}{2}\left(23.5 \mathrm{~m}^{-x}\right)<0\right. \\
& \Rightarrow M(x)=\frac{P x}{2}+P(11.75 \mathrm{~m})
\end{aligned}
$$

Summanizing

$$
\left.\begin{array}{ll}
-23.5 m<x<0 & 0<x<23.5 m \\
F(x)=\frac{P}{2} \sin \theta=\frac{P x}{2 R} & F(x)=-\frac{P}{2} \sin \theta=\frac{-P_{x}}{2 R} \\
S(x)=\frac{P}{2} \cos \theta & S(x)=-\frac{P}{2} \cos \theta \\
M(x)=\frac{P x}{2}+P(11.75 m) & M(x)=-\frac{P x}{2}+P(11.75 m)
\end{array}\right]
$$

Nour drour slatcher

Page 18 of 24

(NOTF: The equation $\frac{d S}{d x}=q$ and $\frac{d M}{d x}=S$ are not exactly to llowed since one wort consider the elemgto alougthe arch for such)

$$
M 6.3
$$

- Pot origin of $x \rightarrow$ system at fursilage
- Aprifar naguitude of littleygh as q
(a) The model is basically the tree body diagram.
There are no reaction forces since the wing how un d external sup ont er that van camry the lead.
NoTE: It is mut dynamic berate of syoumety (sulanuermoment) and sicause of the special coalition that the integrated lift force equals to the plane weight in stablettight
(b) For steady hue flight the total lift must be equal to the weight, ie...

$$
\begin{aligned}
\sum F_{7}=0 \quad \phi_{+} & \Rightarrow-p+\int_{-L_{2}}^{+v_{2}} q d x=0 \\
& \Rightarrow q x]_{-L_{2}}^{+L_{2}}=p \Rightarrow q=\frac{p}{c}
\end{aligned}
$$

There are no axial forces so $F(x)=0$ We have two rectimrof the ming:

$$
\begin{gathered}
0<x<4 / 2 \\
-4 / 2<x<0
\end{gathered}
$$

There is symmetry, so ourrerults should be the same, suit let's be sure.

For: $0<x \ll / 2$

$$
g(x)=1 / 2
$$

use: $\frac{d S}{d x}=q(x)$

$$
\begin{aligned}
\Rightarrow S(x) & =\int \frac{P}{L} d x \\
& =\frac{P x}{L}+C
\end{aligned}
$$

Go to the tip and see $r=0$ at $x=4 / 2$

$$
\begin{aligned}
& \Rightarrow S(L / 2)=0=\frac{p}{2}+c_{1} \Rightarrow c_{1}=-P / 2 \\
& \Rightarrow S(x)=p\left(\frac{x}{c}-\frac{1}{2}\right)
\end{aligned}
$$

progress to:

$$
\begin{aligned}
\frac{d M}{d x} & =\rho \\
\Rightarrow M(x) & =\int P\left(\frac{x}{L}-\frac{1}{2}\right) d x \\
& =\frac{P x^{2}}{2 L}-\frac{P x}{2}+C_{2}
\end{aligned}
$$

Again, at the tip: $h=0$ at $x=4 / 2$
fo:

$$
\begin{array}{r}
M\left(\frac{L}{2}\right)=0=\frac{P L}{8}-\frac{P L}{4}+C_{2} \\
\Rightarrow C_{2}=\frac{P L}{8}
\end{array}
$$

Finally: $M(x)=\frac{P}{2}\left(\frac{x^{2}}{C}-x+\frac{L}{4}\right)$

Now for: $-4 / 2<x<0$
afoul $g(x)=\frac{P}{C}$
using: $\frac{d S}{d x}=q(x) \Rightarrow \delta(x)=\int \frac{P}{C} d x$

$$
=\frac{\mathcal{P} x}{C}+C_{3}
$$

Go to that tip $(x=-4 / 2)$ were $s=0$ cad.

$$
\begin{gathered}
S(-L / 2)=-\frac{P}{2}+C_{3} \Rightarrow C_{3}=+\frac{P}{2} \\
\Rightarrow S(x)=p\left(\frac{x}{c}+\frac{1}{2}\right)
\end{gathered}
$$

Note that the value cumutchage by the weight P at the wot $\left(\frac{d s}{d x}(x=0)=-p\right)$ and it vies!
and finally with: $\frac{d M}{d x}=\rho(x)$

$$
\begin{aligned}
\Rightarrow M(x) & =\int P\left(\frac{x}{L}+\frac{1}{2}\right) d x \\
& =\frac{P x^{2}}{\partial L}+\frac{P x}{2}+C_{4}
\end{aligned}
$$

Again, at thirtip $(x=-L / 2)$, the numentir zero. So.

$$
\begin{aligned}
M(-L / 2)=0=\frac{P L}{8}- & \frac{P L}{4}+C_{4} \\
& \Rightarrow C_{4}=\frac{P C}{8}
\end{aligned}
$$

$$
\text { resulexigin: } \mu(x)=\frac{p}{2}\left(\frac{x^{2}}{L}+x+\frac{c}{4}\right)
$$

This is rymmetic abmitterenot as x suither from + to - in valae.
furmanizsin:
$F(x)-0$ evengutere

$$
\begin{array}{rlrl}
F(x) & =0 & 0<x<4 / 2 \\
S(x) & =P\left(\frac{x}{c}-\frac{1}{2}\right) & & 0<x \\
& =P\left(\frac{x}{L}+\frac{1}{2}\right) \quad-4 / 2<x<0 \\
M(x) & =\frac{P}{2}\left(\frac{x^{2}}{L}-x+\frac{c}{4}\right) & 0<x<4 / 2 \\
& =\frac{P}{2}\left(\frac{x^{2}}{4}+x+\frac{L}{4}\right)-4 / 2<x<0
\end{array}
$$

slatchingthe lost two:

(c) The highest moment is at the wot, so that is the location of greatest loading as in the shear.
A common sense inspection of the loading conditions suggests that the ming willaxerm in the tollowigy manner:

(symmetric asmenthe fur loge)

Note also that the load is Xaurtemed at the atthchenent to the forelage
(forthought)
Now have $L \rightarrow 1.1<$
what happens? First qu mercers to $q=\frac{p}{1.1 \mathrm{~L}}$
(still intyraterto P mut engin broth)
So the shear will br "strung out" butstil have the same maxima value of $P / 2$:

$$
\begin{aligned}
s(x) & =P\left(\frac{x}{1.16}-\frac{1}{2}\right) \quad 0<x<\frac{1.1<}{2} \\
& =P\left(\frac{x}{1.1<}+\frac{1}{2}\right) \quad-\frac{1.1}{2} L<x<0
\end{aligned}
$$

The key change comes in the moment. There are longer moment arms, so the maximum moment at the not will increase. Via the equations.

$$
\begin{aligned}
M(x) & =\frac{p}{2}\left(\frac{x^{2}}{1.1 c}-x+\frac{1.1 L}{4}\right) \quad 0<x<\frac{1.1}{2} L \\
& =\frac{P}{2}\left(\frac{x^{2}}{1.1 L}+x+\frac{1.1 L}{4}\right)-\frac{1.1}{2} L<x<0
\end{aligned}
$$

This fives a maximums value of

$$
M(0)=\frac{1.1 P L}{8}
$$

it nonreader by 10% !

