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Unified Engineering I1 Spring 2007

Problem S13 (Signals and Systems) SOLUTION

1. The LT is 5
354+ 35— 10
G(s) = —————,
(S) 82 _ 4
Because the numerator is the same order as the denominator, the partial fraction
expansion will have a constant term:

—2 < Re[s] < 2

352+ 35— 10
s2—4
352+ 35— 10
-2 +2)

¢
= +
@ s—2+3+2

G(s) =

To find a, b, and ¢, use coverup method:

a = G(s),_n=3

2 _
b - 35+ 35—10 —9
S+2 §5=2
3s2+3s—10
c = — =1
3_2 S=-—2
50
G(s) = 3+ 2 + ! 2 < Rels] < 2
5= §—2 s+4+2 s

We can take the inverse LT by simple pattern matching, taking note of the fact that
the pole at s = 2 must be anticausal, since it is to the right of the ROC. The result is

that

g(t) = 36(t) — 2e%c(—t) + e~ Ha(t)

2. The LT is 5?13 5
s*+35—1

G(S) ey ‘—‘—‘—‘;5—‘—_——4—-—-—-—’ Re[s] < ‘—‘2

that is, the same as in part (1) except for the ROC. Therefore,
G(s) = 3+ 2 + ! Re[s] < -2
B s—2 s+2°

The inverse LT is then

g(t) = 36(1) — 2eFo(—t) — e Ha(—t)

3. The LT is given by

652 -+ 265 + 26

Gle) = s+ 1)(s+2)(s+3)

—2 < Rels] < —1

1



The partial fraction expansion is

6352 + 265 + 26

G =
(s) (s+ 1)(s +2)(5 +3)
- a n b + c
T os+1 542 s+3
where
a 652 -+ 265 -+ 26 _3
(s+2)(s+3) ;=1
652 + 26s + 26
b = el 22 =2
(s+l)(s+3) s=—2
6574265426 _
(s+1)(s+2) |y
So 3 9 1
G(s):s+1+s+2+s+3’ —2 < Refs] <« -1

The inverse LT is given by

g(t) = (e7¥ + 2¢7%) o(t) — 3¢ o (~1)

. The LT is
652 + 265 + 26

(s+ D(s+2)(s+3)’
This is the same as in part (3}, except for the ROC. Therefore, the partial fraction
expansion is

G{s) = -3 < Re[s] < -2

3 2 1

— R -2
3+1+s+2+s+3’ 3 < Rels] <

G(s) =
and the inverse LT is

g(t) = e Fo(t) — (27 + 37" o (—t)

. The LT is
4524+ 11s+ 0

S s+ 1)(s+2)
This one is a little tricky — there is a second order pole at s = —1. So the partial
fraction expansion is

G(s) —2 < Rels] < -1

452+1ls+9_~ a_ . b +_°
(s+12(s+2) s+1 (s+1)2 s+2

G(s) =

We can find & and ¢ by the coverup method:

o 45?2 +11s+ 9 _5
s+ 2 1
482 +11s+ 9
C = VT =3
(S+1) s=—2

2



S0 a 2 3

s+1 + (s+1)2 + s+2
To find a, pick a value of s, and plug into the equation above. The easiest value to
pick is s = 0. Then

G(s) =

a 2 3 9
Gl)= -4 —+= ==
O =3+mgE+t3=3
Solving, we have

a=1

Therefore,
1 2 3

G =
(s) s—|—1+(s+1)2+s+2’

—2 < Re[s] < —1

The inverse LT is then

g(t) =3 Ha(t) — (e7" + 2te™) o(—t)

. The LT is
452 +11s+9

= (s +1)2(s+2)

This problem is similar to above. The partial fraction expansion is

1 2 3
G =
(%) S+1+(s+1)2+s+2’

G(s) Rels] < -2

Rels] < -2

The inverse LT is then

g(t) = — (e7t + 2te™ + 3e™ %) o (—1)

. The LT is 4 N .
4s° + 11s° + 5s +
= -1
G(s) 2 1 1)° , < Re[s] < 0
We can find b and d by the coverup method
p o 488 +11s°+5542 _
B (S+ 1)2 §=0 B
3 2
4 = 4s +1152+53+2 _4
8
s=--1
%0 483 + 1182 2 2
s* +11s°+ bs + a ¢ 4
G(s) = =24 =
(5) $2(s+1)? s+sz+s+1+(s+1)2

To find a and ¢, pick two values of s, say, s = 1 and s = 2. Then

o) 44114542 o 2 c 4
12(1+1)2 "1 12 141 (1+1)2
4-22411-22+5-2+2 o 2 ¢ 4

G(2) = =2,z

) (2 1 1)2 PRI W L R



Simplifying, we have that

a+ e -8
2 2
7} 4 c 3
23 2
Solving for @ and ¢, we have that
a = 1
c = 3
S
° 2 3 4

—1 < Re[s] <0

1
G(s) = - + =
(s) s+52+s+1+(s—1—1)2’

The inverse LT is then
g(t) = (3™ + 4te™") o{t) — (1 + 2t} o(—1)

. The LT 18 5 5
4s? + 115 4+ 55+ 2
G(s) = R w1
()= 2 Reli <
From above, the PFE is
1 2 3 4
G(s) = " + Re[s] < —1

Pl s+1 * (s +1)%
The inverse LT is then
g{t) = — (3e™ +4te™ + 1+ 2t) o (1)

. The LT is
s34+ 352 4+ 95+ 12

EFTITE TR Rels] < 0

G(s) =

G(s) can be expanded as

5% 4357 + 95+ 12
F0) (=19
83 4+ 352 4+95 4+ 12
(s+27)(s — 2j)(s + 37)(s - 37)
a b c d
s+2j+s—2j+s+3j+s~w3j

G(s) =

The coefficients can be found by the coverup method:

o = s+ 352 £ 95+ 12 _ 05
(s = 27)(s + 35) (5 ~ 35) | y=—o;

53+ 352+ 95+ 12

(s +27)(5+37)(s — 35) | smyo

5% 4 35% + 95 + 12

(s +25)(s — 25) (s — 37) | =35

834+ 3s2 405 + 12

(s +27)(s = 27)(5 4+ 37) | s y3

4



Therefore

0.5 0.5 055  —0.57

G =
() 5¥% Ts—2 Tsxa Tso3;

Rels] < 0

and the inverse LT is

g(t) = —0.5 (e7 " ¥t o3t 7e* Y o (1)
This can be expanded using Euler’s formula, which states that
€% = cosat + jsinat

Applying Euler’s formula yields

g(t) = — (cos2t + sin 3t) o(—1)



Unified Engineering II Spring 2007
Problem S14 (Signals and Systems) SOLUTION

The transfer functions needed in this problem are the (noncausal) smoother,

—a?
A P )
and a similar (causal) low-pass filter
2
(22
G2(5) = (.S““I“CE)Q

The input is assumed to be
u{t) = coswt

1. Find the transfer function, G1(jw), as a function of frequency, w. Solution: Simply
replacing s by jw, we have

2 2

—a a
Gl = =
) = Gt Pt

Note that even though jw is complex, G (jw) is real for all w.

2. Since the transfer function is complex, it can be represented as
G (jw) = Ay (w)e’®1 )

where the amplitude of the transfer function is A;(w), and the phase of the transfer
function is ¢1{w). Find A;(w) and ¢ {w). Solution: The expression above can be
expanded as

G1(jw) = A1(w) (cos (¢1(w)) + jsin (41(w)))

and hence

L )

Aq = abs (G)
Since in the present case, G1(jw) is real, we must have that the phase ¢; = 0, and
therefore
2
a
A T T
1("“') o2 F a2
Prw =10

3. Find the transfer function, Ga(jw), as a function of frequency, w, as well as Az{w) and
¢2{w). Solution: Express Gy as

a2

Ga(jw) = Gota?



Since the magnitude of a product is the product of the magnitudes,

a2

abs(jw + a)?
2

Ag(w) =

a

P
(Ver+a?)
C w?+a?
That is, Az{w) and A;(w) are exactly the same!

Next, find ¢o:
da(w) = =2 tan_l(w/a)

The minus sign is because the term jw+a is in the denominator of Ga(jw); the factor
of 2 is because there are two such terms. So the phases of the transfer functions are
different, even though the amplitudes are the same.

. For the input u(t) above, show that the output of the system G is
v1(t) = A(w) cos(wit + ¢1(w))

and do likewise for system Gg. Solution: It's enough to show the results for y;(¢),
since the result for the case yo(f) results just by changing subscripts. Since the input

15 . s
ejwt + eijt

u(t) = cos{wt) = 5
the output is given by
G1(jw)e?t + G {—jw)e Tt
yi (t) — (.7 ) 5 1( )

_ Al(w)e]‘i‘l(w)ejwt.,.i_Al(_w)eJq"l(_w)e“JWt

B 2
But Aj{—w) = Ai(w), and ¢1(—w) = —¢1(w). This result is in fact valid for any
transfer function G(jw}) that results from a real impulse response g(¢). Therefore,

A w ej¢1(w)eth +A w e—jﬁbl(w)e_jf&-’t
yi(t) = 1) 5 1)

ej¢1 (w) eth + e““qul(w)e_th
2
= Ai(w} cos(wt + ¢1(w))

= A (w

as required.

. Ay and As determine how much the magnitude of the input cosine wave is affected by
each filter. Ideally, A; and Ay would be 1, meaning that the filters don’t change the
magnitude of the input sine at all. Which filter (if either) changes the magnitude the
least? Solution: A;(w) = As{w), so the two filters have exactly the same magnitude
respense — neither is better in that regard.



6. ¢1 and ¢ determine how much the phase of the input cosine wave is affected by each
filter. Non-zero values of ¢ correspond to a shifting left or right (i.e., advancing or
delaying} the sine wave. Ideally, ¢; and ¢» would be zero, meaning that the filters
don’t change the phase of the input sine at all. Which filter (if either) produces the
least phase shift? Solution: ¢;(w) = 0 for all w, so it has the least phase shift.

7. Explain why the non-causal filter is preferred in signal processing applications where
it can be applied. Solution: For many signal processing applications, the noncausal
filter would be preferred, since it produces no change in the phase of the signal from
input to output. Conversely, real-time filters almost always unavoidably change the
phase from input to output.



