T21
concepts: - conduction heat $x-f$ or with sources

- Ist caur
- Tourier's Law
a) $13+$ Can:

$$
\begin{aligned}
& 0=\dot{q}(x)-\left(\dot{q}(x)+\frac{d \dot{q}}{d x} d x\right)+\alpha d x \quad ; \quad-\frac{d \dot{q}}{d x}+\alpha=0, \dot{q}=-k \frac{d T}{d x} \\
& \frac{d^{2} T}{d x^{2}}+\frac{\alpha}{k}=0 \quad \text { B.C.: } T(L)=T_{0} \quad,\left.\frac{d T}{d x}\right|_{x=-L}=0
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{d T}{d x}=-\frac{\alpha}{k} x+c_{1} ; c_{1}=-\frac{\alpha L}{k} \\
& T(x)=-\frac{\alpha}{2 k} x^{2}-\frac{\alpha L}{k} x+c_{2} ; c_{2}=T_{0}+\frac{3}{2} \frac{\alpha L^{2}}{k} T \uparrow\left\{j=0\left(\frac{\alpha T}{\alpha x}=0\right)\right. \\
& T(x)=\frac{\alpha L^{2}}{k}\left(\frac{3}{2}-\frac{x}{L}-\frac{1}{2}\left(\frac{x}{L}\right)^{2}\right)+T_{0} \\
& \left.T(x)=-\frac{\alpha L^{2}}{2 k}\left(\frac{x}{L}+1\right)^{2}+T_{0}+2 \frac{\alpha L^{2}}{k}\right]
\end{aligned}
$$

case 1
cane 2

c) max temp $@ x=-L \quad T_{\max }=T_{0}+2 \frac{\alpha L^{2}}{k}$
d) domain $A: \frac{d^{2} T}{d x^{2}}+\frac{\alpha}{k}=0 \forall x \in[-L, 0) ;\left.\frac{d T}{d x}\right|_{x=-}=0, T(0)=T_{S A}$ demain $B: \quad \frac{d^{2} T}{d x^{2}}+\frac{\alpha}{k}=0 \forall x \in[C, L] ; T(0)=T_{s B}, T(L)=T_{0}$ didectric strip: $\dot{q}_{\text {strip }}=\frac{T_{S A}-T_{S B}}{R_{\text {strp }}} ; 1$ stlaw $: \dot{q}=$ conot accons stip

$$
\begin{equation*}
\left.\rightarrow \frac{d T}{d x}\right|_{x=0} ^{A}=-\frac{\dot{q} \operatorname{strip}}{k} ;\left.\quad \frac{d T}{d x}\right|_{x=0} ^{B}=-\frac{\dot{q} \operatorname{stip}}{k} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
A: \quad T(x) & =-\frac{\alpha}{2 k_{1}} x^{2}+C_{A_{1}} x+C_{A_{2}} \\
\frac{d T}{d x}(x) & =-\frac{\alpha}{k} x+C_{A_{1}} \quad ; \quad C_{A_{1}}=-\frac{\alpha L}{k} \\
T(0) & =T_{S A}=C_{A_{2}} \quad \rightarrow T(x)=-\frac{\alpha}{2 k} x^{2}-\frac{\alpha L}{k} x+T_{S A}
\end{aligned}
$$

$B: \quad T(x)=-\frac{\alpha}{2 k} x^{2}+C_{B_{1}} x+C_{B_{2}}$

$$
T(0)=T_{S B}=C_{B_{2}} ; \quad T(L)=T_{0}=-\frac{\alpha}{2 k} L^{2}+C_{B 1} L+T_{S B}
$$

$$
\rightarrow T(x)=-\frac{\alpha}{2 k} x^{2}+\left[\frac{T_{0}-T_{s B}}{L}+\frac{\alpha L}{2 k}\right] x+T_{S B}
$$

$$
\begin{aligned}
& \rightarrow-\frac{\alpha L}{K}=-\frac{1}{K} \frac{T_{S A}-T_{S B}}{R_{\text {strr }}} ; \quad ; \quad \frac{T_{O}-T_{S B}}{L}+\frac{\alpha L}{2 K}=-\frac{1}{K} \frac{T_{S A}-T_{S B}}{R_{S \sin }} \\
& \rightarrow \quad T_{S B}=T_{0}+\frac{3}{2} \frac{\alpha L^{2}}{K} ; \quad T_{S A}=T_{S B}+\alpha L R_{s \operatorname{trip}}
\end{aligned}
$$

Doman A: $T(x)=-\frac{\alpha}{2 k} x^{2}-\frac{\alpha L}{k} x+\frac{3}{2} \frac{\alpha L^{2}}{k}+T_{0}+\alpha L R_{\text {stopp }} \quad x \in[-L, 0]$
Domain $B: T(x)=-\frac{\alpha}{2 K} x^{2}-\frac{\alpha L}{K} x+\frac{3}{2} \frac{\alpha L^{2}}{K}+T_{0} \quad x \in[0, L]$

c) $\Delta T_{\text {stap }}=\alpha L R$ strip
f) max temp. (a) $x=-L$

$$
T_{\max }=T_{0}+\frac{2 \alpha L^{2}}{K}+\alpha L R_{\sin p}
$$

zero slope at wall (acliabatic), temperateure in domain A increared dere to resitance in strip of fixed To!
$T 22$
a) convection heat tranifer is dominant becoure
$\frac{T_{\text {center }}-T_{\text {wall }}}{T_{\text {wase }}-T_{\text {w }}} \nsim \frac{4 L}{K} \ll 1$ neglent temp. nonunifarmits, insiche sphen ond henue conduction

Introduce: 4
b) $\frac{d E_{w}}{d t}=-\dot{Q}_{\mathrm{con} v}$ $Q_{\text {conr }}$
$m c \frac{d T}{d t}=-A h\left(T-T_{\infty}\right)$
c) $\quad \frac{d T}{d t}=-\frac{4 \pi R^{2} h}{3 c \frac{4}{3} \pi R^{3}}\left(T-T_{\infty}\right)$

$$
\frac{d T}{d t}=-\frac{3 h}{\rho c R}\left(T-T_{\infty}\right)
$$

d) $G=T-T_{\infty}: \frac{d G}{d t}=-\frac{1}{r} G$ $G(t)=\epsilon_{0} e^{-\frac{t}{\tau}}$

$$
T=\frac{\rho c R}{3 h}
$$

trandient heat x fer

f) $R-C$ circuit

$$
\begin{aligned}
& \frac{d E}{d t}+\frac{E}{R C}=0 \text { sc } T=R C \\
& E(t)=E e^{-t / R C}
\end{aligned}
$$

Problem S15 (Signals and Systems) SOLUTION

Find the Fourier transforms of the following signals:
1.

$$
g(t)=\delta(t-T)
$$

Solution: Simply perform the FT to obtain

$$
G(j \omega)=\int_{-\infty}^{\infty} \delta(t-T) e^{-j \omega t} d t=e^{-j \omega T}
$$

where we have used the sifting property of the FT to find the result.
2.

$$
g(t)= \begin{cases}1, & |t| \leq T \\ 0, & |t|>T\end{cases}
$$

Solution: Perform the FT integral to obtain

$$
\begin{aligned}
G(j \omega) & =\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t \\
& =\int_{-T}^{T} e^{-j \omega t} d t \\
& =\frac{e^{j \omega T}-e^{-j \omega T}}{j \omega} \\
& =2 \frac{\sin (\omega T)}{\omega} \\
& =2 T \operatorname{sinc}(\omega T)
\end{aligned}
$$

3.

$$
g(t)=\frac{1}{t^{2}+T^{2}}
$$

Solution: We want to find

$$
\mathcal{F}[g(t)]=G(j \omega)=f(\omega)
$$

From duality, we know that

$$
\mathcal{F}[f(t)]=2 \pi g(-\omega)=2 \pi \frac{1}{\omega^{2}+T^{2}}
$$

Find the inverse FT:

$$
f(t)=\mathcal{F}^{-1}\left[2 \pi \frac{1}{\omega^{2}+T^{2}}\right]=\mathcal{L}^{-1}\left[2 \pi \frac{1}{-s^{2}+T^{2}}\right]
$$

where we have used $\omega=s / j$. Do a partial fraction expansion:

$$
\begin{aligned}
2 \pi \frac{1}{-s^{2}+T^{2}} & =\frac{-2 \pi}{(s+T)(s-T)} \\
& =\frac{\pi}{T} \frac{1}{s+T}+\frac{\pi}{T} \frac{1}{s-T}
\end{aligned}
$$

To take the inverse LT, note that since we are dealing with FTs, we must assume that the ROC includes the imaginary axis, so that the ROC is

$$
-T<\operatorname{Re}(s)<T
$$

and the inverse LT is

$$
f(t)=\frac{\pi}{T} e^{-t T} \sigma(t)+\frac{\pi}{T} e^{t T} \sigma(-t)=\frac{\pi}{T} e^{-|t T|}
$$

Finally, we need $f(\omega)$, not $f(t)$, so that

$$
G(j \omega)=f(\omega)=\frac{\pi}{T} e^{-|\omega T|}
$$

4.

$$
g(t)=\frac{\sin \pi t / T}{\pi t / T}
$$

Solution: We want to find

$$
\mathcal{F}[g(t)]=G(j \omega)=f(\omega)
$$

From duality, we know that

$$
\mathcal{F}[f(t)]=2 \pi g(-\omega)=\frac{\sin \pi \omega / T}{\pi \omega / T}=2 \pi \operatorname{sinc}(\pi \omega / T)
$$

Find the inverse FT:

$$
f(t)=\mathcal{F}^{-1}[2 \pi \operatorname{sinc}(\pi \omega / T)]
$$

We can use the results of part (2) to obtain

$$
f(t)= \begin{cases}T, & |t| \leq \pi / T \\ 0, & |t|>\pi / T\end{cases}
$$

Finally, exchange ω for t to obtain

$$
G(j \omega)=f(\omega)= \begin{cases}T, & |\omega| \leq \pi / T \\ 0, & |\omega|>\pi / T\end{cases}
$$

That this is indeed the correct transform can be confirmed by taking the inverse transform of $G(j \omega)$.
5. Find the inverse transform of

$$
G(j \omega)=\left(\frac{\sin \omega T}{\omega T}\right)^{2}
$$

Solution: Note that

$$
\mathcal{F}^{-1}\left[\frac{\sin \omega T}{\omega T}\right]=f(t)= \begin{cases}1 / 2 T, & |t| \leq T \\ 0, & |t|>T\end{cases}
$$

from part (2). Therefore,

$$
g(t)=\mathcal{F}^{-1}[G(j \omega]=f(t) * f(t)
$$

The convolution can be performed graphically or symbolically to obtain

$$
g(t)= \begin{cases}\frac{1}{4 T^{2}}(t+2 T), & -2 T<t \leq 0 \\ \frac{1}{4 T^{2}}(-t+2 T), & 0<t \leq 2 T \\ 0, & \text { otherwise }\end{cases}
$$

The result can be confirmed by taking the direct FT of $g(t)$.

Problem S16 (Signals and Systems) SOLUTION

1. Define

$$
g_{a}(t)=e^{j \omega_{0} t} e^{-a|t|}= \begin{cases}e^{j \omega_{0} t} e^{-a t}, & t>0 \\ e^{j \omega_{0} t} e^{a t}, & t<0\end{cases}
$$

The FT of $g_{a}(t)$ is

$$
G_{a}(j \omega)=\frac{1}{j \omega-j \omega_{0}+a}-\frac{1}{j \omega-j \omega_{0}-a}
$$

Clearing the fraction, we have that

$$
G_{a}(j \omega)=\frac{-2 a}{\left(j \omega-j \omega_{0}+a\right)\left(j \omega-j \omega_{0}-a\right)}=\frac{2 a}{\left(\omega-\omega_{0}\right)^{2}+a^{2}}
$$

Note that $G_{a}(j \omega)$ is real, so we need worry only about the real part. Also, note that in the limit as $a \rightarrow 0, G_{a}(j \omega)$ is zero everywhere, except at $\omega=\omega_{0}$, where it goes to infinity. So $G(j \omega)$ looks like an impulse at $\omega=\omega_{0}$. Its area is given by

$$
A=\int_{-\infty}^{\infty} \frac{2 a}{\left(\omega-\omega_{0}\right)^{2}+a^{2}} d \omega
$$

This integral may be evaluated by making the change of variables $u=\omega-\omega_{0}$. Then $d u=d \omega$, and

$$
A=\int_{-\infty}^{\infty} \frac{2 a}{u^{2}+a^{2}} d u=\left.2 \tan ^{-1}\left(\frac{u}{a}\right)\right|_{-\infty} ^{\infty}=2\left(\frac{\pi}{2}-\frac{-\pi}{2}\right)=2 \pi
$$

Therefore,

$$
G(j \omega)=2 \pi \delta\left(\omega-\omega_{0}\right)
$$

2. The FT of a cosine is given by

$$
\mathcal{F}\left[\cos \omega_{0} t\right]=\mathcal{F}\left[\frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}\right]=\pi\left[\delta\left(\omega-\omega_{0}\right)+\delta\left(\omega+\omega_{0}\right)\right]
$$

The FT of a sine is given by

$$
\mathcal{F}\left[\sin \omega_{0} t\right]=\mathcal{F}\left[\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2 j}\right]=\pi\left[-j \delta\left(\omega-\omega_{0}\right)+j \delta\left(\omega+\omega_{0}\right)\right]
$$

Unified Engineering Problein Set wrekl2 spring, 2007

SOLUTIONS

M12.1 Steelrod

Cross -Section

(a) Draw the Free Body Diagram

Take equilibrium of moments/torques about x, Use right hand rule fort ($R H R$)

$$
\begin{aligned}
\sum T_{x_{1}}=0 & \Rightarrow-T_{A}-400 \mathrm{~N} \cdot \mathrm{~m}+\left(100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{r}}\right)(0.8 m)=0 \\
& \Rightarrow T_{A}=-320 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

To determine the for que distribution $T(x$,$) ,$ make cuts in the shagtrod in the regions of different loading

Eisstrefion $0<x_{1}<1.2 \mathrm{~m}$

Cam take equilibrium:

$$
\begin{aligned}
\sum T_{x_{1}}=0 \stackrel{R H R}{\leftrightarrows} & \Rightarrow 320 \mathrm{~N} \cdot \mathrm{~m}+T\left(x_{1}\right)=0 \\
+ & \Rightarrow T\left(x_{1}\right)=-320 \mathrm{~N} \cdot \mathrm{~m} \\
0<x_{1} & <1.2 \mathrm{~m}
\end{aligned}
$$

OR

$$
\begin{aligned}
\text { use } \frac{d T}{d x_{1}} & =-t\left(x_{1}\right) \\
& =0 \\
\Rightarrow T & =c_{1}
\end{aligned}
$$

Boundary Condition is that at $x_{1}=0,7$ opposes thereaction torque $\Rightarrow T(0)=-320 \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{aligned}
& \Rightarrow T\left(x_{1}\right)=-320 \mathrm{~N} \cdot \mathrm{~m} \\
& 0<x_{1}<1.2 \mathrm{~m} \text { sonerntult } \\
& \text { as beware } \\
& \text { cis : t malt be (}{ }_{\text {PAL }}
\end{aligned}
$$

Now lookat region 2

$$
1.2 m<x,<2 m
$$

taking a cut:
$400 \mathrm{~N} \cdot \mathrm{~m}$

by taking equilibrium:

$$
\begin{aligned}
& \sum T_{x_{1}}=0 \stackrel{\left(马_{+}\right.}{P_{+}+1} \Rightarrow 320 \mathrm{~N} \cdot \mathrm{~m}-400 \mathrm{~N} \cdot \mathrm{~m} \\
&+\left(100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}}\right)\left(x_{1}-1.2 \mathrm{~m}\right)+T\left(x_{1}\right)=0 \\
& \Rightarrow T\left(x_{1}\right)=80 \mathrm{~N} \cdot \mathrm{~m}-\left(100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}}\right)\left(x_{1}-1.2 \mathrm{~m}\right) \\
& \begin{array}{r}
T\left(x_{1}\right)=200 \mathrm{~N} \cdot \mathrm{~m}-\left(100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}}\right)\left(x_{1}\right) \\
1.2 \mathrm{~m}<x_{1}<2 \mathrm{~m}
\end{array}
\end{aligned}
$$

or use:

$$
\begin{aligned}
\frac{d T}{d x_{1}} & =-t\left(x_{1}\right) \\
& =-100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{m} \\
\Rightarrow T\left(x_{1}\right) & =-100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{m} x_{1}+C_{1}
\end{aligned}
$$

Look at boundary of region to ge $+C_{1}$. Easiest is $x_{1}=2 \mathrm{~m} . .$. . This is free end $\Rightarrow T\left(2 m_{r}\right)=0$

$$
\text { using } \Rightarrow 0=-200 \frac{N \cdot m}{m}+C_{1}
$$

fines: $C_{1}=200 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}}$

$$
\text { and } \Rightarrow T\left(x_{1}\right)=\left(-100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}}\right)\left(x_{1}\right)+200 \mathrm{~N} \cdot \mathrm{~m}
$$

$$
1.2 m<x_{1}<2 m
$$

Page 4 of 12

$$
\begin{array}{r}
\phi\left(x_{1}=0\right)=0 \\
\Rightarrow c_{1}=0
\end{array}
$$

So:

$$
\phi(x,)=-\frac{32 O N \cdot m}{G \sigma} x, \quad 0<x_{1}<1.2 m
$$

Use this to determine the twist at $x_{1}=1.2 \mathrm{~m}$ to use as the boundary condition for region (section) 2 (ire.matehing):

$$
\Rightarrow \phi(1.2 m)=-\frac{320 \mathrm{~N} \cdot \mathrm{~m}}{G J}(1.2 m)
$$

Proceeding to Region 2: $\quad(1.2 m<x,<2 m)$
where $T\left(x_{1}\right)=200 \mathrm{~N} \cdot \mathrm{~m}-\left(100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{m}\right)\left(x_{1}\right)$

$$
\text { so: } \begin{aligned}
\frac{d \phi}{d x_{1}} & =\frac{1}{G J}\left(200 \mathrm{~N} \cdot \mathrm{~m}-100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}} x_{1}\right) \\
\Rightarrow \phi\left(x_{1}\right) & =\frac{1}{G J} \int\left(200 \mathrm{~N} \cdot \mathrm{~m}-100 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}} x_{1}\right) d x_{1} \\
& =\frac{1}{G J}\left(200 \mathrm{~N} \cdot \mathrm{~m} x_{1}-50 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~m}} x_{1}^{2}\right)+C_{2}
\end{aligned}
$$

Now use $\phi(1.2 w)=\frac{1}{G J}\left(-384 \mathrm{~N} \cdot \mathrm{~m}^{2}\right)$
matching gives:

$$
\begin{aligned}
& \text { matching } 8 \mathrm{~V} 80^{\circ} \\
&-384 \mathrm{~N} \cdot \mathrm{~m}^{2}=200 \mathrm{~N} \cdot \mathrm{~m}(1.2 m)-50 \frac{N \cdot m}{m}(1.2 m)^{2}+C_{2} G J \\
& \Rightarrow-384 \mathrm{~N} \cdot \mathrm{~m}^{2}=240 \mathrm{~N} \cdot \mathrm{~m}^{2}-72 \mathrm{~N} \cdot \mathrm{~m}^{2}+C_{2} G J
\end{aligned}
$$

giving.

$$
c_{2}=\frac{-552 \lambda \cdot m^{2}}{G J}
$$

$\delta_{0}:$

$$
\phi\left(x_{1}\right)=\frac{1}{G J}\left(200 N \cdot m x_{1}-50 \frac{N \cdot m}{m} x_{1}^{2}-552 N \cdot m^{2}\right)
$$

And x the $x p$:

$$
\begin{aligned}
& \text { And } x \text { the tip: } \\
& \phi(2 \mathrm{~m})=\frac{1}{G J}\left(400 \mathrm{~N} \cdot \mathrm{~m}^{2}-200 \mathrm{~N} \cdot \mathrm{~m}^{2}-552 \mathrm{~N} \cdot \mathrm{~m}^{2}\right) \\
& \Rightarrow \phi(2 \mathrm{~m})=\frac{-352 \mathrm{~N} \cdot \mathrm{~m}^{2}}{G J}
\end{aligned}
$$

Finally, need to calculate GO to get the for final stitches of the rod.
engeneral: $J=\iint\left(x_{2}^{2}+x_{3}^{2}\right) d A$
We know that for a circular cross -section:

$$
J=\frac{\pi R^{4}}{2}
$$

Here, $R=7.5 \mathrm{~cm}=0,075 \mathrm{~m}$

$$
\Rightarrow J=4.97 \times 10^{-5} \mathrm{~m}^{4}
$$

We are given $E=200 G P a, \sim=0.3$ for steel. For isotropic materials:

$$
G=\frac{E}{2(1+N)}
$$

Page 6 of 12

$$
\begin{aligned}
\Rightarrow G & =\frac{200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}}{2(1+0.3)}=76.9 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2} \\
\Rightarrow G J & =\left(76.9 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)\left(4.97 \times 10^{-5} \mathrm{~m}^{4}\right) \\
& =3.82 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Use this in the explosion for the tip deflection.

$$
\begin{aligned}
& \phi(2 \mathrm{~m})=\frac{-352 \mathrm{~N} \cdot \mathrm{~m}^{2}}{3.82 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2}} \\
& \Rightarrow \phi_{\text {tip }}=-9.21 \times 10^{-5} \text { radian }
\end{aligned}
$$

$$
\begin{aligned}
\text { with } 2 \pi \text { radians } & =360^{\circ} \\
& \Rightarrow 57 .
\end{aligned}
$$

$$
\Rightarrow 57.3 \% \text { radian }
$$

$$
\Rightarrow \phi_{t_{1 p}}=-5.28^{\circ} \times 10^{-3}
$$

(c) To find the shear stress, use:

$$
\tau_{r e s}=\frac{T r}{J}
$$

To determine the maxion um magnitude, find the maximum magnitude of $T(x$,$) and$ r. The value ot r is maximized along the outer surface of the rod $(r=7.5 \mathrm{~cm})$ $T(x$,$) has a maximum magnitude of$ $-320 \mathrm{~N} \cdot \mathrm{~m}$ for $0<x_{1}<1.2 \mathrm{~m}$.

To get a value for Tres, convert these to consistent units and proceed:

$$
\text { waximuen magnitude } \tau_{r e s}=\frac{(-320 \mathrm{~N} \cdot w)(0.075 \mathrm{~m})}{0.795 \times 10^{-3} \mathrm{~m}^{4}}
$$

\Rightarrow maximum magnitude

$$
\begin{gathered}
\tau_{r e s}=0.030 \mathrm{MPa} \text { at } r=7.5 \mathrm{~cm} \\
0<x_{1}<1.2 \mathrm{~m}
\end{gathered}
$$

(d) Rod is now a hollow tuts with wall thickness of 3 mm :

$$
\begin{aligned}
& R_{0}=7.5 \mathrm{~cm} \\
& R_{i}=7.2 \mathrm{~cm}=R_{0}-3 \mathrm{~mm}
\end{aligned}
$$

The only thing that changer trim the solid rod case is the cross-sectional polar moment of inertia. Sun....
(a) Tor que distributim does not change This is statically determinate and owes mot depend upon the crods-sectional puperties
(b) All remain the same in considering the twist except Jchanger. Tabulate Jvia superposition (remove innersection):

$$
\begin{aligned}
J & =\frac{\pi R_{0}^{4}}{2}-\frac{\pi R_{i}^{4}}{2}=\frac{\pi}{2}\left(R_{0}^{4}-R_{i}^{4}\right) \\
& =\frac{\pi}{2}\left(7.5^{4}-7.2^{4}\right)\left[\mathrm{m}^{4}\right]\left(\times 10^{-8}\right) \\
\Rightarrow J & =7.49 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

so:
ϕ will charges the change in the inverse of $\sin u$: $\phi=\frac{1}{G J} \int T(x) d$,$x .$

$$
\begin{aligned}
& J_{\text {new }} / \text { Jold }=\frac{7.49 \times 10^{-6} \mathrm{~m}^{4}}{4.97 \times 10^{-5} \mathrm{~m}^{4}}=0.151 \\
& \Rightarrow \phi_{\text {new }} / \phi_{\text {old }}=\mathrm{J}_{\text {old }} / \mathrm{J}_{\text {new }}=6.62
\end{aligned}
$$

So: $\phi_{\text {tip }}$ increases by $562 \%_{0}$!
(c) Here, the shear stress is $\tau_{\text {res }}=\frac{\text { Tr }}{\sigma}$ only the poler wow en of inertia, J, charger here. The maximum value of r is the same nd the maximum value of Tad ito locatimir the same. The chang is via the inverse of r.
\Rightarrow maximum magnitude
$\tau_{\text {res }}$ increases by 562%
stays at

$$
r=7.5 \mathrm{~cm}
$$

$$
0<x_{1}<1.2 \mathrm{~m}
$$

(M12.2) MEMORANDUM

TO: Company of interest
FROM: Paul A. Lagace
Re: Device to measure torque
The preliminary design of a circular rod to measure torque has been evaluated as per your request. The objective is to maximize the sensitivity of the measuring capability of the rod provided by a pointer at the far end of the rod calibrated to a linear angular scale. The rod is clamped at one end and the torque is applied through a gear, at the center of the shaft, connected by a chain. The rod has a circular cross-section. These considerations yield the following physical set-up for the shaft:

The equation to determine the twist at the tip of the rod is:

$$
\square_{\text {ip }}=T L / 2 G J
$$

and was derived through the approach documented in the accompanying Appendix. The parameters are the applied torque, T , the total rod length, L , the material shear modulus, G , and the polar moment of inertia of the cross-section, J . The torque is applied and you have indicated the length is constrained. Thus, in order to maximize the sensitivity of the arrangement, one must maximize the twist measured for a given torque and this implies minimizing the shear modulus of the material, G , and the polar moment of inertia of the cross-section, J .

We would need more information and design constraints from your company to be better able to recommend a material to be used. We expect that you will use a typical isotropic material, such as a metal, for your application. The shear modulus is directly related to the longitudinal modulus, E, and inversely related to the Poisson's ratio. Poisson's ratio is equal to 0.3 for most materials, so we recommend you minimize the value of the longitudinal modulus, E , within your other constraints. In working to minimize the polar moment of inertia of the cross-section, J, we note that a hollow tube, as opposed to one with a solid cross section, produces a lower value of this parameter. For a hollow tube, the value of the parameter is directly related to the fourth power of the outer radius minus the fourth power of the inner radius. Thus, within other considerations, the cross-section should have a wall as thin as possible, and with the smallest outer radius possible.

In summary, the recommendations for the rod are as follows:

- Given more design constraints by your company, we will be able to better downselect material for the rod
- The rod should be as long as possible.
- The cross-section of the rod should be hollow, designed to have walls as thin as possible, and with as small a radius as possible.

APPENDIX
Drawing of physical situation:

- Circular rod (berth $<$)
- Clomped at one end
- Torque applied at halt-length ($L / 2$)

\rightarrow wont to measure angle ϕ at rod tip
Twist of rod is determined via:

$$
\begin{equation*}
\frac{d \phi}{d x_{1}}=\frac{T\left(x_{1}\right)}{G \sigma} \tag{1}
\end{equation*}
$$

\Rightarrow Determine $T\left(x_{1}\right)$:
Draw Free Body Diagram

$$
\begin{gathered}
T_{A} \hat{T_{L}} \xrightarrow[L_{2} \rightarrow T_{T}]{ } \rightarrow x_{1} \\
\Sigma T=0 \xrightarrow{R+R} \rightarrow-T_{A}+T=0 \\
\Rightarrow T_{A}=T
\end{gathered}
$$

Next make arts along rod. Need two sections one to each side of concentrated applied to que.

Section 1:

$$
\begin{aligned}
& 0<x_{1}<L / 2 \\
& \sum T=0 T_{T}+\left(x_{1}\right) \\
& T_{+}+T
\end{aligned} \quad-T_{A}+T\left(x_{1}\right)=0
$$

$$
\begin{aligned}
& \text { Section 2: }
\end{aligned}
$$

$$
\begin{aligned}
& \sum T=0 \stackrel{R+\operatorname{tr}}{\mathrm{P}_{+}} \Rightarrow-T_{A}+T+T\left(\dot{x}_{1}\right)=0 \\
& \Rightarrow T\left(x_{1}\right)=0 \quad \text { Y }<x_{1}<l
\end{aligned}
$$

$u \sin f(1)$

$$
\begin{aligned}
0<x_{1}<L / 2 & \Rightarrow \frac{d \phi}{d x_{1}}=\frac{T}{G J} \\
\Rightarrow \phi & =\frac{T}{G J} \int d x_{1}=\frac{T x_{1}}{G J}+C_{1}
\end{aligned}
$$

At the wall $\left(x_{1}=0\right)$, the twist is zero $(\phi=0)$

$$
\Rightarrow C_{1}=0
$$

So $\phi=\frac{T_{x_{1}}}{G J} \quad 0<x_{1}<L_{2}$
evaluate $a t x_{1}=4_{2}$ for matining: $\phi=\frac{T L}{2 G T}$
Now for Section (2):

$$
\frac{d \phi}{d x_{1}}=0 \quad \Rightarrow \phi=c_{2}
$$

math at $L / 2 \Rightarrow C_{2}=\frac{T L}{2 G J}$
so: $\phi_{\text {tip }}=\frac{T L}{2 G J}$

Now consider the she or mo che ns, G, and the polar moment of her tia, T :

Allowing for a hollow tuts:

$$
J=\frac{\pi R_{0}^{4}}{2}-\frac{\pi R_{i}^{4}}{2}=\frac{\pi}{2}\left(R_{0}^{4}-R_{i}^{4}\right)
$$

For misotropric material:

$$
G=\frac{E}{2(1+N)}
$$

we want to maximize $\phi_{\text {tip }}$ (reading) in order to maximize reading sens xivity for a given applied torque. Thus maximize:

$$
\frac{2 \phi_{t i p}}{T}=\frac{L}{G J}
$$

constant
with $G=\frac{E}{2(1+\omega)}$

$$
v=\frac{\pi}{2}\left(R_{v}^{4}-R_{i}{ }^{4}\right)
$$

