Problem S17 Solution (Signals and Systems)

Problem Statement: Consider the quadrature modulation/demodulation system shown below. The purpose of the system is to transmit two signals, $x_{1}(t)$ and $x_{2}(t)$, over the same frequency band simultaneously. $x_{1}(t)$ and $x_{2}(t)$ are bandlimited signals, with bandwidth W. That is, their Fourier transforms $X_{1}(f)$ and $X_{2}(f)$ satisfy

$$
\begin{aligned}
& X_{1}(f)=0, \quad|f| \geq W \\
& X_{2}(f)=0, \quad|f| \geq W
\end{aligned}
$$

The bandwidth is much less than the modulation frequency, f_{0}. The lowpass filters shown in the diagram are ideal, with transfer function

$$
L(f)= \begin{cases}1, & |f|<W \\ 0, & |f|>W\end{cases}
$$

Find the Fourier transforms of the signals $x_{3}(t), x_{4}(t), x_{5}(t), x_{6}(t), x_{7}(t), x_{8}(t)$, and $x_{9}(t)$ in terms of $X_{1}(f)$ and $X_{2}(f)$.

Solution: Define

$$
\begin{aligned}
w_{1}(t) & =\cos \left(2 \pi f_{0} t\right) \\
w_{2}(t) & =\sin \left(2 \pi f_{0} t\right) \\
w_{3}(t) & =2 \cos \left(2 \pi f_{0} t\right) \\
w_{4}(t) & =2 \sin \left(2 \pi f_{0} t\right)
\end{aligned}
$$

The FTs are

$$
\begin{aligned}
& W_{1}(f)=\frac{1}{2} \delta\left(f-f_{0}\right)+\frac{1}{2} \delta\left(f+f_{0}\right) \\
& W_{2}(f)=\frac{-j}{2} \delta\left(f-f_{0}\right)+\frac{j}{2} \delta\left(f+f_{0}\right) \\
& W_{3}(f)=\delta\left(f-f_{0}\right)+\delta\left(f+f_{0}\right) \\
& W_{4}(f)=-j \delta\left(f-f_{0}\right)+j \delta\left(f+f_{0}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
X_{3}(f) & =X_{1}(f) * W_{1}(f) \\
& =\frac{1}{2} X_{1}\left(f-f_{0}\right)+\frac{1}{2} X_{1}\left(f+f_{0}\right)
\end{aligned}
$$

$$
X_{4}(f)=X_{2}(f) * W_{2}(f)
$$

$$
=\frac{-j}{2} X_{2}\left(f-f_{0}\right)+\frac{j}{2} X_{2}\left(f+f_{0}\right)
$$

$$
\begin{aligned}
X_{5}(f) & =X_{3}(f)+X_{4}(f) \\
& =\frac{1}{2} X_{1}\left(f-f_{0}\right)+\frac{1}{2} X_{1}\left(f+f_{0}\right)+\frac{-j}{2} X_{2}\left(f-f_{0}\right)+\frac{j}{2} X_{2}\left(f+f_{0}\right)
\end{aligned}
$$

$$
X_{6}(f)=X_{5}(f) * W_{3}(f)
$$

$$
=X_{5}\left(f-f_{0}\right)+X_{5}\left(f+f_{0}\right)
$$

$$
=\frac{1}{2} X_{1}\left(f-2 f_{0}\right)+\frac{1}{2} X_{1}(f)+\frac{-j}{2} X_{2}\left(f-2 f_{0}\right)+\frac{j}{2} X_{2}(f)
$$

$$
+\frac{1}{2} X_{1}(f)+\frac{1}{2} X_{1}\left(f+2 f_{0}\right)+\frac{-j}{2} X_{2}(f)+\frac{j}{2} X_{2}\left(f+2 f_{0}\right)
$$

$$
=X_{1}(f)+\frac{1}{2} X_{1}\left(f-2 f_{0}\right)+\frac{1}{2} X_{1}\left(f+2 f_{0}\right)
$$

$$
+\frac{-j}{2} X_{2}\left(f-2 f_{0}\right)+\frac{j}{2} X_{2}\left(f+2 f_{0}\right)
$$

$$
X_{7}(f)=X_{5}(f) * W_{4}(f)
$$

$$
=-j X_{5}\left(f-f_{0}\right)+j X_{5}\left(f+f_{0}\right)
$$

$$
=\frac{-j}{2} X_{1}\left(f-2 f_{0}\right)+\frac{-j}{2} X_{1}(f)-\frac{1}{2} X_{2}\left(f-2 f_{0}\right)+\frac{1}{2} X_{2}(f)
$$

$$
+\frac{j}{2} X_{1}(f)+\frac{j}{2} X_{1}\left(f+2 f_{0}\right)+\frac{1}{2} X_{2}(f)-\frac{1}{2} X_{2}\left(f+2 f_{0}\right)
$$

$$
=X_{2}(f)-\frac{1}{2} X_{2}\left(f-2 f_{0}\right)-\frac{1}{2} X_{2}\left(f+2 f_{0}\right)
$$

$$
+\frac{-j}{2} X_{1}\left(f-2 f_{0}\right)+\frac{j}{2} X_{1}\left(f+2 f_{0}\right)
$$

Low-pass filtering $x_{6}(t)$ and $x_{7}(t)$ eliminates all but the low-freqiency terms, so that

$$
\begin{aligned}
& X_{8}(f)=X_{1}(f) \\
& X_{9}(f)=X_{2}(f)
\end{aligned}
$$

Problem S18 (Signals and Systems)

To begin, label the signals as shown below:

From the problem statement,

$$
y(t)=[x(t)+A] \cos \left(2 \pi f_{c} t+\theta_{c}\right)
$$

Define

$$
\begin{aligned}
z(t) & =x(t)+A \\
w(t) & =\cos \left(2 \pi f_{c} t+\theta_{c}\right)
\end{aligned}
$$

The factor $w(t)$ can be expanded as

$$
w(t)=\cos \left(2 \pi f_{c} t+\theta_{c}\right)=\cos \theta_{c} \cos 2 \pi f_{c} t-\sin \theta_{c} \sin 2 \pi f_{c} t
$$

The Fourier transform of $w(t)$ is then given by

$$
\begin{aligned}
W(f) & =\mathcal{F}\left[\cos \left(2 \pi f_{c} t+\theta_{c}\right)\right] \\
& =\frac{1}{2} \cos \theta_{c}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]-\frac{1}{2} \sin \theta_{c}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right] \\
& =\frac{1}{2}\left(\cos \theta_{c}+j \sin \theta_{c}\right) \delta\left(f-f_{c}\right)+\frac{1}{2}\left(\cos \theta_{c}-j \sin \theta_{c}\right) \delta\left(f+f_{c}\right)
\end{aligned}
$$

The Fourier transform of $z(t)=x(t)+A$ is given by

$$
Z(f)=\mathcal{F}[z(t)]=X(f)+A \delta(f)
$$

$Z(f)$ is bandlimited, because $X(f)$ is, and of course the impulse function is bandlimited. So the FT of $y(t)$ is given by the convolution

$$
\begin{aligned}
Y(f) & =Z(f) * W(f) \\
& =\frac{1}{2}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+f_{c}\right)\right]
\end{aligned}
$$

Next, compute the spectra of $y_{1}(t)$ and $y_{2}(t)$. To do so, we need the spectra of $w_{1}(t)$ and $w_{2}(t)$:

$$
\begin{aligned}
W_{1}(f)=\mathcal{F}\left[w_{1}(t)\right] & =\mathcal{F}\left[\cos 2 \pi f_{c} t\right] \\
& =\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right] \\
W_{2}(f)=\mathcal{F}\left[w_{2}(t)\right] & =\mathcal{F}\left[\sin 2 \pi f_{c} t\right] \\
& =\frac{1}{2}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right]
\end{aligned}
$$

Then

$$
\begin{aligned}
Y_{1}(f)= & W_{1}(f) * Y(f) \\
= & \frac{1}{2}\left[Y\left(f-f_{c}\right)+Y\left(f-f_{c}\right)\right] \\
= & \frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z(f)\right] \\
& +\frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z(f)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right] \\
= & \frac{1}{2} \cos \theta_{c} Z(f) \\
& +\frac{1}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
Y_{4}(f)= & W_{2}(f) * Y(f) \\
= & \frac{1}{2}\left[-j Y\left(f-f_{c}\right)+j Y\left(f-f_{c}\right)\right] \\
= & \frac{-j}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z(f)\right] \\
& +\frac{j}{4}\left[\left(\cos \theta_{c}+j \sin \theta_{c}\right) Z(f)+\left(\cos \theta_{c}-j \sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right] \\
= & -\frac{1}{2} \sin \theta_{c} Z(f) \\
& +\frac{1}{4}\left[\left(-j \cos \theta_{c}+\sin \theta_{c}\right) Z\left(f-2 f_{c}\right)+\left(j \cos \theta_{c}+\sin \theta_{c}\right) Z\left(f+2 f_{c}\right)\right]
\end{aligned}
$$

Now, when $y_{1}(t)$ and $y_{4}(t)$ are passed through the lowpass filters, the $Z\left(f-2 f_{c}\right)$ and $Z\left(f+2 f_{c}\right)$ terms are eliminated, and the $Z(f)$ terms are passed. Therefore,

$$
\begin{aligned}
Y_{2}(f) & =\frac{1}{2} \cos \theta_{c} Z(f) \\
Y_{5}(f) & =-\frac{1}{2} \sin \theta_{c} Z(f)
\end{aligned}
$$

and

$$
\begin{aligned}
y_{2}(t) & =\frac{1}{2} \cos \theta_{c} z(t) \\
y_{5}(t) & =-\frac{1}{2} \sin \theta_{c} z(t)
\end{aligned}
$$

After passing these signals through the squarers, we have

$$
\begin{aligned}
y_{3}(t) & =\frac{1}{4} \cos ^{2} \theta_{c} z^{2}(t) \\
y_{6}(t) & =\frac{1}{4} \sin ^{2} \theta_{c} z^{2}(t)
\end{aligned}
$$

$y_{7}(t)$ is the sum of these, so that

$$
\begin{aligned}
y_{7}(t) & =y_{3}(t)+y_{7}(t) \\
& =\frac{1}{4}\left[\cos ^{2} \theta_{c} z^{2}(t)+\sin ^{2} \theta_{c} z^{2}(t)\right] \\
& =\frac{1}{4} z^{2}(t)
\end{aligned}
$$

Finally, $r(t)$ is obtained by passing taking the square root of $y_{7}(t)$, so that

$$
\begin{aligned}
r(t) & =\sqrt{z^{2}(t) / 4} \\
& =\frac{|z(t)|}{2}
\end{aligned}
$$

if the positive root is always taken. But $z(t)=x(t)+A$ is always positive, according to the problem statement. Therefore,

$$
x(t)=2 r(t)-A
$$

Problem S19 Solution

Label the signals in the problem as below:
8.8. Consider the modulation system shown in Figure P8.8. The input signal $x(t)$ has a Fourier transform $X(j \omega)$ that is zero for $|\omega|>\omega_{M}$. Assuming that $\omega_{c}>\omega_{M}$, answer the following questions:
(a) Is $y(t)$ guaranteed to be real if $x(t)$ is real?
(b) Can $x(t)$ be recovered from $y(t)$?

Figure P8.8

The Fourier transform of $x(t)$ is given by $X(f)$. Then the FT of $x_{1}(t)$ is given by

$$
X_{1}(f)=H(f) X(f)= \begin{cases}-j X(f), & 0<f<f_{M} \\ +j X(f), & -f_{M}<f<0 \\ 0, & |f|>f_{M}\end{cases}
$$

The signal $x_{2}(t)$ is given by

$$
x_{2}(t)=w_{1}(t) x_{1}(t)
$$

where $w_{1}(t)=\cos 2 \pi f_{c} t$. The FT of $w_{1}(t)$ is

$$
W_{1}(f)=\frac{1}{2}\left[\delta\left(f-f_{c}\right)+\delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{2}(t)$ is then

$$
\begin{aligned}
X_{2}(f) & =X_{1}(f) * W_{1}(f) \\
& =\frac{1}{2}\left[X_{1}\left(f-f_{c}\right)+X_{1}\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
-\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

The signal $x_{3}(t)$ is given by

$$
x_{3}(t)=w_{2}(t) x(t)
$$

where $w_{2}(t)=\sin 2 \pi f_{c} t$. The FT of $w_{2}(t)$ is

$$
W_{2}(f)=\frac{1}{2}\left[-j \delta\left(f-f_{c}\right)+j \delta\left(f+f_{c}\right)\right]
$$

The FT of $x_{3}(t)$ is then

$$
\begin{aligned}
X_{3}(f) & =X(f) * W_{2}(f) \\
& =\frac{1}{2}\left[-j X\left(f-f_{c}\right)+j X\left(f+f_{c}\right)\right] \\
& = \begin{cases}-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
-\frac{j}{2} X\left(f-f_{c}\right), & f_{c}-f_{M}<f<f_{c} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}<f<-f_{c}+f_{M} \\
+\frac{j}{2} X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

Finally, the FT of $y(t)$ is given by

$$
\begin{aligned}
Y(f) & =X_{2}(f)+X_{3}(f) \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
0, & f_{c}-f_{M}<f<f_{c} \\
0, & -f_{c}<f<-f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases} \\
& = \begin{cases}-j X\left(f-f_{c}\right), & f_{c}<f<f_{c}+f_{M} \\
+j X\left(f+f_{c}\right), & -f_{c}-f_{M}<f<-f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

First, $y(t)$ is guaranteed to be real if $x(t)$, because if $x(t)$ real, $X(f)$ has conjugate symmetry, and then $Y(f)$ has conjugate symmetry, which implies $y(t)$ real.

Second, $x(t)$ can be recovered from $y(t)$ as follows. If $y(t)$ is modulated by $2 \sin 2 \pi f_{c} t$, the resulting signal is $z(t)=2 y(t) \sin 2 \pi f_{c} t$, which has FT

$$
\begin{aligned}
Z(f) & =-j Y\left(f-f_{c}\right)+j Y\left(f+f_{c}\right) \\
& = \begin{cases}-X\left(f-2 f_{c}\right), & 2 f_{c}<f<2 f_{c}+f_{M} \\
+X(f), & -f_{M}<f<0 \\
+X(f), & 0<f<f_{M} \\
-X\left(f+2 f_{c}\right), & -2 f_{c}-f_{M}<f<-2 f_{c} \\
0, & \text { else }\end{cases}
\end{aligned}
$$

If $z(t)$ is then passed through a lowpass filter, with cutoff at $f= \pm f_{M}$, then the resulting signal is identical to $x(t)$.

Problem szo Solution

We can world in f or ω. lprefer f a similar solution will result using ω.
(a) We must first find $P(f)$. Since $p(t)$ is periodic, it has a Fourier series

$$
p(t)=\sum_{n=\infty}^{\infty} a_{n} e^{j 2 \pi n t / 2 \Delta}
$$

since the period is $T=2 \Delta$. The an are given by

$$
\begin{aligned}
& a_{n}=\frac{1}{T} \int_{0}^{T} p(t) e^{-j 2 \pi n t / 2 \Delta} d t \\
&=\frac{1}{T} \int_{0}^{T-}[\delta(t)-\delta(t-\Delta)] e^{-j \pi n t / \Delta} \\
&=\frac{1}{T}\left(1-e^{-j n n}\right) \\
&= \begin{cases}2 / T, & n \text { odd } \\
0, & n \text { even }\end{cases}
\end{aligned}
$$

Therefore,

$$
a_{n}= \begin{cases}1 / \Delta, & n \text { odd } \\ 0, & n \text { ever }\end{cases}
$$

Therefore,

$$
p(t)=\sum_{n \text { odd }} \frac{1}{\Delta} e^{j 2 \pi n t / 2 \Delta}
$$

Taking the ET,

$$
P(f)=\sum_{\text {mod }} \frac{1}{\Delta} \delta(f-n / 2 \Delta)
$$

Note that since $x_{p}(t)=x(t)<p(t)$,

$$
\begin{aligned}
X_{p}(f)= & X(f) * p(f) \\
= & \sum_{n \text { odd } \Delta} \frac{1}{} \times(f-n / 2 \Delta) \\
& X_{p}(f)
\end{aligned}
$$

Note that $f_{m}=\omega_{m} / 2 \pi$. As drawn above, $\Delta=\frac{\pi}{2 \omega_{m}}=\frac{1}{4 \mathrm{fm}}$

$Y(f)$ is just $H(f) \cdot X_{p}(f)$:

(b) To recover $x(t)$ from $x_{p}(t)$, first multiply $x_{p}(t)$ by $\cos \frac{\pi t}{\Delta}$.
This process inverts every other sample, so that we end up with the samples of $x(t)$ as in a normal sampling process! So one approach that works is

where

$$
L(f)= \begin{cases}\Delta, & |f|<\frac{1}{2 \Delta} \\ 0, & e / s e\end{cases}
$$

(c) To recover $x(t)$ from $y(t)$, multiply $y(t)$ by 2Δ cos $\pi t / \Delta$, to obtain $z^{(t)}$. The resulting
spectrum is

So passing through an ideal low pass will recover $x(t)$:

So the solution is

where

$$
L(f)= \begin{cases}1, & |f|<\frac{1}{2 \Delta} \\ 0, & \text { else }\end{cases}
$$

- almost the same as in (b)
(d) In either case, the system will work if

$$
\begin{aligned}
& \frac{1}{2 \Delta}>f_{m}=\frac{\omega_{m}}{2 \pi} \\
\Rightarrow \Delta>2 f_{m} & =\frac{\omega_{m}}{\pi}
\end{aligned}
$$

This is consistent with the Nyquist sampling theorem.

Unified Engineering Problem Set
week 13 Spring, 2007
SOLUTiONS

M 13.1

The basic governing equation is:

$$
\begin{equation*}
\frac{d^{2} u_{3}}{d x_{1}^{2}}+\frac{P}{E I} u_{3}=0 \tag{1}
\end{equation*}
$$

with the general homogeneor solution:

$$
u_{3}=A \sin \left(\sqrt{\frac{P}{F_{I}}} x_{1}\right)+B \cos \left(\sqrt{\frac{P}{F_{I}}} x_{1}\right)+C+D x_{1} \text { (2) }
$$

- At the clamped end $(x,=0): u_{3}=0$

$$
\frac{d u_{3}}{d x_{1}}=0
$$

- At the roller-supported end nith applied land ($x_{1}=L$).

$$
\begin{aligned}
& u_{3}=0 \\
& M=0 \Rightarrow \frac{d^{2} u_{3}}{d x_{1}^{2}}=0
\end{aligned}
$$

\rightarrow To facilitate wniting the solutime let ur represent:

$$
\begin{equation*}
\lambda=\sqrt{\frac{P}{\overline{E I}}} \tag{1}
\end{equation*}
$$

So(1) becunes: $\frac{d^{2} u_{3}}{d x_{1}^{2}}+\lambda^{2} u_{3}=0$
and (2) hecones:

$$
\begin{equation*}
u_{3}=A \sin \lambda x_{1}+B \cos \lambda x_{1}+C+D x_{1} \tag{2}
\end{equation*}
$$

To ase the boundary condixions in the bafic solution need derivativer of (2). So:

$$
\begin{aligned}
& \frac{d u_{3}}{d x_{1}}=\lambda A \cos \lambda x,-\lambda B \sin \lambda x_{1}+D \\
& \frac{d^{2} u_{3}}{d x_{1}}=-\lambda^{2} A \sin \lambda x_{1}-\lambda^{2} B \cos \lambda x_{1}
\end{aligned}
$$

Wour apply each of the 4 Brundany Conditions to get 4 equations:
(a) $x_{1}=0, u_{3}=0 \Rightarrow B+C=0$ (3)
(a) $x_{1}=0, \frac{d u_{3}}{d x_{1}}=0 \Rightarrow \lambda A+D=0(4)$

Page 3 of 13
(a) $x_{1}=L, u_{3}=0 \Rightarrow A \sin \lambda L+B \cos \lambda L+C+D L=0(\delta)$
(8) $x_{1}=L, \frac{d^{2} u_{3}}{d x_{1}{ }^{2}}=0 \Rightarrow-\lambda^{2} A \sin \lambda L-\lambda^{2} B \cos \lambda_{L}=0$

Giving: $A \sin \lambda L+B \cos \lambda L=0$ (6)
\rightarrow Now namipulate these equations....
use (6)bin (5) $\Rightarrow C+D L=0$
giving: $C=-D L$
use this in (3) to get:

$$
B=D L
$$

working directly with (4) fives:

$$
A=-D / \lambda
$$

\rightarrow All constants are now in terns of one constant, D. Use these expressions in the overall solution, (2)':

$$
u_{3}=-D / \lambda \sin \lambda x_{1}+D L \cos \lambda x_{1}-D L+D x_{1}
$$

and thus:

$$
u_{3}=D\left(-1 / \lambda \sin \lambda x_{1}+L \cos \lambda x_{1}-L+x_{1}\right)
$$

This gives 2 possible solutions:

$$
\begin{aligned}
& D=0 \quad(\text { trivial }) \\
& \text { or } \\
& -1 / \lambda \sin \lambda x_{1}+L \cos \lambda x_{1}-L+x_{1}=0
\end{aligned}
$$

bringing back $\sqrt{\frac{P}{E I}}=\lambda$ yields:

$$
-\sqrt{\frac{E I}{P}} \sin \left(\sqrt{\frac{P}{E I}} X_{1}\right)+L \cos \left(\sqrt{\frac{P}{E I}} X_{1}\right)-L+X_{1}=0
$$

This is The expression to deteminethe iteens. the loads P that sutirty this are the eigenvalues and thur the buckling load (s). And with these value (s) back in the governing expression, we have the eigenvectors and thus the bucklingmode(s).

N/3.2

(a) Model this as a simply-fupported column. For a simply - supported contiguratim:

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

for a square cross-section with a side length of a, use:

$$
\begin{aligned}
& \text { of a, use: } \\
& I=\frac{5 h^{3}}{12} \text { to get: } I=\frac{a^{4}}{12}
\end{aligned}
$$

The value of E for alamincun as per this case is $10.3 \times 10^{6} \mathrm{ss} / \mathrm{min}^{2}$. $L=15 \mathrm{tt}$ and convening this x_{0} inches: $L=180$ in using theisecon the exprestion for Per fives:

$$
P_{c r}=\frac{\pi^{2}\left(10.3 \times 10^{6} \mathrm{ss} / \mathrm{m}^{2}\right)\left(a^{4} / 12\right)}{(180 \mathrm{~m})^{2}}
$$

Working this through gives:

$$
P_{c r}=261.5 a^{4}
$$

$a \operatorname{in}[i n]$
P in [$1 b]$
(b) To determine the squashing blood, the material compressive wexmade is needed.
For thealumimun: $\sigma_{c u}=63 \mathrm{ksi}$
Have: $\frac{\text { Psguash }}{A}=\sigma_{\text {cu }}$
Here.. $A=a^{2}$
So: $P_{s q}=63,000 \mathrm{a}^{2}$
a in $[i n]$
P in $[b]$
one can also detemine the start of a "transition" zone via:

$$
\frac{P_{\text {transition }}}{A}=\sigma_{c y}
$$

$$
\begin{array}{ll}
\text { here: } \sigma_{c y}=55 / c s i \\
\Rightarrow P_{\text {trons }}=55.000 a^{2} & a \sin [\operatorname{in}] \\
\left(\begin{array}{lll}
\text { (yes })
\end{array}\right. & P \sin [18]
\end{array}
$$

(c) The key to drawing the de fignchartis to determine the points (P and a) where the mode of tai lure goes from "buckling" to "transition" to "crushing/squarhing". No this by equating the buckling cares with the latter two, solving for a, and fubrxtionting the result to get P. Then plot each curve.
summarizing
(A) Buckling: $P_{c r}=261.4 a^{4}$

All:
(B) Transition: $P_{\text {tres o }}=55,000 a^{2}$
$a \operatorname{in}[\operatorname{li}]$ P in $[B]$
(C) Squashing: Psf $=63.000 a^{2}$
going from (A) to (B):

$$
\begin{aligned}
261.4 a^{4} & =55,000 a^{2} \\
\Rightarrow a^{2} & =210.4
\end{aligned}
$$

$$
\Rightarrow a=14.5 \text { in } \begin{aligned}
\Rightarrow \text { giving } & P=1.46 \times 10^{9} \mathrm{lss}
\end{aligned}
$$

going from (A) to (C) :

$$
\begin{aligned}
& 261.4 a^{4}=63,000 a^{2} \\
& \Rightarrow a^{2}=241.0 \\
& \Rightarrow a=15.5 \text { in } \\
& \Rightarrow \operatorname{sing} \rho=1.52 \times 10^{7} 15 \mathrm{~s}
\end{aligned}
$$

Now draw the plots of each curve and label these key points

Design Chart

$\mu / 3.3$

(a) The maximum load is the limit placed by the buckling load. This does not change due to the eccentric loading. This is a simply supported configuration, so:

$$
P_{c r}=\frac{\pi^{2} E I}{L^{2}}
$$

Have for the steal : $E=200 G P_{a}=200 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ Need moment of mercia I. Fora rectangular crar-section:

$$
I=\frac{b u^{3}}{12}
$$

The strecture will buckle in the direction with the lowest I, so where " h " is "smallest:

Page 10 of 13

$$
\begin{aligned}
\Rightarrow I & =\frac{(8 \mathrm{~cm})(5 \mathrm{~cm})^{3}}{12} \\
& =\frac{\left(8 \times 10^{-2} \mathrm{~m}\right)\left(5 \times 10^{-2} \mathrm{~m}\right)^{3}}{12}=8.33 \times 10^{-7} \mathrm{~m}^{4}
\end{aligned}
$$

This gives:

$$
\begin{aligned}
& \text { is gives: } \\
& P_{c r}=\frac{\pi^{2}\left(200 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{w}^{2}}\right)\left(8.33 \times 10^{-7} \mathrm{~m}\right)}{(1 \mathrm{~m})^{2}} \\
& \Rightarrow P_{c r}=1.64 \times 10^{6} \mathrm{~N}
\end{aligned}
$$

Cheek $\sigma_{c r}$ to see it it is below $\sigma_{c y}$ ard $\sigma_{c u}$:

$$
\begin{aligned}
\text { ck } \sigma_{c r} \text { to see it } \frac{P_{c r}}{A} & =\frac{1.64 \times 10^{6} \mathrm{~N}}{\left(8 \times 10^{-2} \mathrm{w}\right)\left(5 \times 10^{-2} \mathrm{~m}\right)}=4.1 \times 10^{8} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \\
& =411 \mathrm{MPa}
\end{aligned}
$$

and this is well below the yield and wexmate stress
(b) For the case of a simply - supported configuration loaded eccentrically, the governing equation is:

$$
u_{3}=e\left[\frac{\left(1-\cos \sqrt{\frac{P}{E I}} L\right)}{\sin \sqrt{\frac{P}{E I}} L} \sin \sqrt{\frac{P}{E I}} x_{1}+\cos \sqrt{\frac{P}{E I}} x_{1}-1\right]
$$

Use the pertinent values of $P_{\text {cr, }}$ E, I, and L, and to determine the deflection at the column center, set $x_{1}=0.5 \mathrm{~m}$.
Normalize that deflection by the length and the applied load by the cixixal load. To do this....
multiply ρ by $\frac{\rho_{c r}}{\rho_{c r}}=\frac{\pi^{2} E I}{\rho_{c r} L^{2}}$

$$
\begin{gathered}
\Rightarrow \sqrt{\frac{P}{E I}}=\sqrt{\frac{P}{E I} \cdot \frac{\pi^{2} F I}{P_{C r} L^{2}}}=\sqrt{\frac{P}{P_{C L}} \frac{\pi^{2}}{L^{2}}} \\
\text { so }=\sqrt{\frac{P}{E I}}=\frac{\pi}{L} \sqrt{\frac{P}{P_{C r}}}
\end{gathered}
$$

Put this back in to the earlier equation to get:

$$
\begin{aligned}
& \text { Put this back into the earlier } \\
& \text { get: } \\
& u_{3}=e\left[\frac{1-\cos \left(\frac{\pi}{L} \sqrt{\frac{P}{P_{r r}}} L\right)}{\sin \left(\frac{\pi}{L} \sqrt{\frac{p}{P_{L r}}} L\right)} \sin \left(\frac{\pi}{L} \sqrt{\frac{P}{P_{c r}}} x_{1}\right)+\cos \left(\frac{\pi}{L} \sqrt{\frac{p}{P_{c r}}} x_{1}\right)-1\right]
\end{aligned}
$$

construing on and dividing through by C :

$$
\begin{aligned}
& \text { consuming on and dividing through } \\
& \frac{u_{3}}{L}=\frac{e}{L}\left[\frac{1-\cos \pi \sqrt{P_{P_{r}}}}{\sin \pi \sqrt{P_{P_{r}}}} \sin \left(\pi \sqrt{\frac{P}{P_{L_{r}}}} \frac{x_{1}}{L}\right)+\cos \left(\pi \sqrt{\frac{P}{P_{C_{r}}} \frac{x_{1}}{L}}\right)-1\right] \\
& x_{1} / 1=0.5 \text { firing: }
\end{aligned}
$$

and at the center, $x_{1} / c=0.5$, giving:

$$
\frac{u_{3}}{L}=\frac{e}{L}\left[\frac{1-\cos \pi \sqrt{\frac{P}{P_{c r}}}}{\sin \pi \sqrt{\frac{P}{P_{c r}}}} \sin \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{c r}}}\right)+\cos \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{c r}}}\right)-1\right]
$$

This is the same expression tor all carer (just use opecitic value of e)
(c) Use this relation ship to make plots for the five caster of $\frac{e}{L}=0,0.010 .02,0.050 .1$.

Normalized Lad wo. Normalized Center Dettection

