Problem S21 (Signals and Systems)

Solution:

1. The signal is plotted below:

The signal is very smooth, almost like a Gaussian. Therefore, I expect that the duration bandwidth product will be close to the theoretical lower bound.
2.

$$
\left(\frac{\Delta t}{2}\right)^{2}=\frac{\int t^{2} g^{2}(t) d t}{\int g^{2}(t) d t}
$$

The two integrals are easily evaluated for the given $g(t)$. The result is

$$
\begin{aligned}
\int t^{2} g^{2}(t) d t & =\frac{7}{2} \\
\int g^{2}(t) d t & =\frac{5}{2}
\end{aligned}
$$

Therefore,

$$
\Delta t=2 \sqrt{\frac{7}{5}}
$$

3. The time domain formula for the bandwidth is

$$
\left(\frac{\Delta \omega}{2}\right)^{2}=\frac{\int \dot{g}^{2}(t) d t}{\int g^{2}(t) d t}
$$

The numerator integral is

$$
\int \dot{g}^{2}(t) d t=\frac{1}{2}
$$

Therefore,

$$
\Delta \omega=\frac{2}{\sqrt{5}}
$$

4. The duration-bandwidth product is

$$
\Delta t \Delta \omega=\frac{4 \sqrt{7}}{5} \approx 2.1166
$$

which is very close to the theoretical lower limit of 2 . This is not surprising, since the shape of $g(t)$ is close to a gaussian.

Problem S22 (Signals and Systems)

Solution:

I used Mathematica to find some of the integrals, although you could use tables or integrate by parts.
(a)

$$
\begin{gathered}
\bar{t}=\int t g^{2}(t) d t=\int_{0}^{\infty} t^{7} e^{-2 t / t a u} d t=\frac{315}{16} \tau^{8} \\
\bar{t}=\int g^{2}(t) d t=\int_{0}^{\infty} t^{6} e^{-2 t / t a u} d t=\frac{45}{8} \tau^{7}
\end{gathered}
$$

Therefore,

$$
\bar{t}=\frac{7}{2} \tau
$$

(b)

$$
\int(t-\bar{t})^{2} g^{2}(t) d t=\frac{315}{32} \tau^{9}
$$

Therefore,

$$
\Delta t=\sqrt{7} \tau
$$

(c)

$$
\int \dot{g}^{2}(t) d t=\frac{9}{8} \tau^{5}
$$

Therefore,

$$
\Delta \omega=\frac{2}{\sqrt{5} \tau}
$$

(d) The duration-bandwidth product is

$$
\Delta t \Delta \omega=2 \sqrt{\frac{7}{5}} \approx 2.366
$$

which compares favotably with the theoretical lower bound

$$
\Delta t \Delta \omega \geq 2
$$

Whified Engineering Problem Set
week 14 Spring. 2007
SOLUTIONS

M14.1 Spring modeled as a rod in uniaxial tension

(a) Total energy of "rod" (springy) in tenons of skessand strain

$$
u=\int_{0}^{\epsilon} \sigma \delta \epsilon \quad \text { per unit volume }
$$

stoss prior to yielding (and arsucning linear behavior):

$$
\sigma=E \epsilon
$$

Combine there two equations to get:

$$
\begin{aligned}
& u=\int_{0}^{\epsilon} E \epsilon \delta \epsilon \\
& \left.\Rightarrow u=\frac{1}{2} E \epsilon^{2}\right]_{0}^{\epsilon}=\frac{1}{2} E \epsilon^{2}
\end{aligned}
$$

Placethiu in terns of σ and $E u s i n g$ the stress-stain relation in the torn:

$$
\epsilon=\frac{\sigma}{E}
$$

Thisfived:

$$
\begin{aligned}
& u=\frac{1}{2} E\left(\frac{\sigma}{E}\right)^{2} \\
& \Rightarrow u=\frac{1}{2} \frac{\sigma^{2}}{E} \text { percuntrolume }
\end{aligned}
$$

(b) Need to place the totolenergy in terms of the pertinent parameters
(i) For a given volume, form (a) we ru it dependson σ and E. We maximize σ to the point of yielding $\left(\sigma_{y}\right)$

$$
U=\frac{1}{2} \frac{\sigma_{y}^{2}}{E} \text { per unit volume }
$$

For cod, we know that:

$$
\sigma=\frac{P}{A}
$$

and volume $=A L=$ censtout
So for a given volume maximize $\frac{\sigma_{Y}{ }^{2}}{E}$
Note that ${ }^{\prime} / 2$ isjuert a constant
(ii) for a given mass of material... this meanorthat the Volume nirlchcege.
Sn (i) noted that volume $=$ LA. Knowing density, ρ, then:

$$
\begin{equation*}
\text { Mass }=\rho C A=\text { constant } \tag{1}
\end{equation*}
$$

To ditenminc total energy, need:

$$
\text { (Energy perunit volume) (Volume) }=\text { Energy }
$$

ane equation (1) to get an expression for the voluene, LA:

$$
\text { Volume }=L A=\frac{\text { enstent }}{e}
$$

use with the expression for Apes cent volume:

$$
\Rightarrow \text { Energy }=\frac{1}{2} \frac{\sigma_{Y}^{2}}{E} \frac{e_{\text {instant }}}{\rho}
$$

disregen lingthecenstents

$$
\Rightarrow \sqrt{\text { maximize } \frac{\sigma_{Y}}{E_{\rho}}}
$$

(iii) fora given cost of material... this (again) means that the Volume willchonge. Operate with the material parameter of cost per mass, c. So:

$$
\text { to the cost }=(\text { cost per mads }) \text { (mars) }
$$

with'the sotal cost as a constent. We murt also use an experassion tor mars inureving materine pdrame texras wo wid in (ii)

$$
\text { Mass }=\rho C A
$$

So:

$$
\text { casit }=(c)(\rho \subset A)=\text { constant }
$$

we con thus, once again, fitan exprestion tor the whenne interms of peixinent waterial parameters:

$$
\text { volume: } C A: \frac{\text { cometent }}{\rho C}
$$

urethis in the exprertion tor to tol encrfy:

$$
\text { Inerfy }=\frac{1}{2} \frac{\sigma_{y}^{2}}{E} \frac{\text { emrifent }}{\rho c}
$$

AgGiv, dirreganding courterts

$$
\Rightarrow \text { maximige } \frac{\sigma_{r}{ }^{2}}{E \rho^{c}}
$$

(c) Cooking at these six materials, calculete the pectivent combinations of parameterr (i.p. The oniferiari foreachcase) and cormpare:

Material $\frac{\begin{array}{c}\text { maximize } \\ \left(\sigma_{y}^{2} / E\right)\end{array}}{\left[10^{6} \mathrm{~Pa}\right]} \frac{\begin{array}{l}\text { maximize } \\ \left(\sigma_{r}^{2} / E \rho\right)\end{array}}{\left[P_{a} /\left(\mathrm{g} / \mathrm{m}^{3}\right)\right]} \quad \frac{\left(\sigma_{y}^{2} / E_{\rho} c\right)}{\left[\frac{10^{3} \mathrm{~N} \cdot \mathrm{~m}}{\ddagger}\right]}$

Al alloy
3.57
1.32
0.66
1.14

Spring steal
Rubber
Titanium
2.10
0.49
0.014

Note: Being clear and unsistenton units is important. Look for each cafe.
volume 2

$$
\sigma_{Y} / E: \frac{\left[10^{6} \mathrm{~Pa}\right]^{2}}{\left[10^{9} \mathrm{~Pa}\right]}=\left[10^{3} \mathrm{~Pa}\right]
$$

extra 10^{3} comes tom numbers
on G. ss
$\sigma_{r}{ }^{2} / E \rho$: Stor tron $\frac{\sigma_{r}{ }^{2}}{E}$ and $\operatorname{codd} \frac{1}{\rho}$

$$
\begin{aligned}
& {\left[10^{6} \mathrm{~Pa}_{G}\right] \cdot \frac{1}{\left[10^{6} \mathrm{~g} / \mathrm{m}^{3}\right]}=\left[\mathrm{PG}_{G} /\left(\mathrm{g} / \mathrm{m}^{3}\right)\right]} \\
& \text { ald also fo to: }\left[\mathrm{N} / \mathrm{m}^{2} /\left(\mathrm{g} / \mathrm{m}^{3}\right)\right]=\left[\frac{\mathrm{N} \cdot \mathrm{n}}{\mathrm{~g}}\right.
\end{aligned}
$$

$\cos t^{\circ}$ could alsogo $t:\left[\mathrm{N} / \mathrm{m}^{2} /\left(\mathrm{g} / \mathrm{m}^{3}\right)\right]=\left[\frac{\mathrm{N} \cdot \mathrm{m}}{\mathrm{g}}\right]$
$\sigma_{y}^{2} / \operatorname{cosec}$: Stout ham $\sigma_{y}^{2} k_{\rho \rho}$ end cad $\frac{1}{c}$

Page 6 of 22

$$
\begin{gathered}
{\left[\mathrm{Pa} /\left(\mathrm{g} / \mathrm{m}^{3}\right)\right] \cdot \frac{1}{\left[5 / 10^{3} \mathrm{~g}\right]}=\left[\frac{10^{3} \mathrm{~Pa} \cdot \mathrm{~m}^{3}}{\ngtr}\right]} \\
\text { could also } 80 \text { to: }\left[\frac{10^{3} \mathrm{~N} \cdot \mathrm{~m}}{4}\right]
\end{gathered}
$$

Consents:

- For the volume criterion rpriafstecl istle best material by ot hast 50%
- For the mass criterion maser is the bert maflevial by or mort an or der of mogniade
- For the cart criterion. rubber is the beat material by over an order of migninitu
- Overall, rubber ir eabilythebect in tho of the three criteria ont is second (close) in the other, so it is the mort lively choice overall.

M14.2 Condition A:

$$
\begin{array}{ll}
\sigma_{11}=-p & \sigma_{12}=0 \\
\sigma_{22}=-p & \sigma_{13}=0 \\
\sigma_{33}=-p & \sigma_{23}=0
\end{array}
$$

Condition B:

$$
\begin{array}{ll}
\sigma_{11}=0.5 p & \sigma_{12}=0 \\
\sigma_{22}=p & \sigma_{13}=0 \\
\sigma_{33}=2 p & \sigma_{23}=0
\end{array}
$$

Condition C:

$$
\begin{array}{ll}
\sigma_{11}=2 p & \sigma_{12}=0 \\
\sigma_{22}=-p & \sigma_{13}=0 \\
\sigma_{33}=0.5 p & \sigma_{23}=0
\end{array}
$$

Condition D:

$$
\begin{array}{ll}
\sigma_{11}=p & \sigma_{12}=0 \\
\sigma_{22}=4-p & \sigma_{13}=0 \\
\sigma_{33}=0.5 p & \sigma_{23}=0
\end{array}
$$

(a) Application of the Tresca condition requires knowlectge of the principal stresses.
For Conditions A, B and C, there are no applied shearstresser so the applied nor wal uthesser are the principalatresser.

Put thar in appropriate order based on engraitude:

condition A			
$\sigma_{I}=\sigma_{11}=-p$	$\frac{\text { Condition B }}{\sigma_{I}=\sigma_{33}=2 p}$		$\frac{\text { Condition } C}{\sigma_{I}=\sigma_{11}=2-p}$
$\sigma_{\text {II }}=\sigma_{22}=-p$	$\sigma_{\text {II }}=\sigma_{22}=p$	$\sigma_{\text {II }}=\sigma_{22}=-p$	
$\sigma_{\text {III }}=\sigma_{33}=-p$	$\sigma_{\text {III }}=\sigma_{11}=0.5 p$	$\sigma_{\text {III }}=\sigma_{33}=0.5 p$	

For condition D, there is no applied utredi in the 3 -axis sine $\sigma_{13}=\sigma_{23}=0$ so σ_{33} is a principolutress. However σ_{12} in un zeno, so the principoletreras inter $1-2$ plane need to muternined.
We te call $\sigma_{33}=\sigma_{\text {III }}$ and label the tho in the 1-2 phone as σ_{I} and $\sigma_{I I}$. We 'el get them in archer Fri last term for planaruxter:
principal stresses are no ts of equation:

$$
\tau^{2}-\tau\left(\sigma_{11}+\sigma_{22}\right)+\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)-0
$$

For condition $D \Rightarrow$

$$
\begin{aligned}
& d x i \operatorname{con} D \Rightarrow \\
& \tau^{2}-\tau(p+4 p)+\left([p](4 p)-[2 p]^{2}\right)=0 \\
& \Rightarrow \tau^{2}-5 p \tau+\left(4 p^{2}-4 p^{2}\right)=0 \\
& \Rightarrow \tau(\tau-5 p)=0 \\
& \Rightarrow\left[=\sigma_{I}=5 p\right. \\
& \tau=\sigma_{I I}=0
\end{aligned}
$$

Frankly un under for
Condition D

$$
\begin{aligned}
& \sigma_{I}=\sigma_{p} \\
& \sigma_{I I}=0.5 p \\
& \sigma_{I I}=0
\end{aligned}
$$

Now apply the Tresca criterion where yield occurs if:

$$
\begin{aligned}
& \left|\sigma_{I}-\sigma_{\text {II }}\right|=\sigma_{y} \\
& \left|\sigma_{\text {II }}-\sigma_{\text {III }}\right|=\sigma_{y} \\
& \left|\sigma_{\text {III }}-\sigma_{I}\right|=\sigma_{y}
\end{aligned}
$$

in addition, the directions lity arrocioted with this is that yieldiry occurs viashear on the plane of max mum en shevestres comeppenting to the difference in those thur priacipuls dresser Here: $\sigma_{y}=1500 \mathrm{MPa}$ Apply each condition...
Condition A: thy drostatic stars

$$
\Rightarrow \text { All differences }=0
$$

$\Rightarrow \lambda_{0}$ yielding

Condition B: $\left|\sigma_{I}-\sigma_{I I}\right|:|2 p-\phi|=p=\sigma_{y}$

$$
\begin{aligned}
&\left|\sigma_{I}-\sigma_{I I I}\right|=|p-0.5 p|=0.5 p=15 \mathrm{M} \\
& \Rightarrow p=3000 \mathrm{NPa} \\
& \Rightarrow p a \\
&\left|\sigma_{\text {II }}-\sigma_{I}\right|=|0.5 p-2 p|=1.5 p=\sigma_{y} \\
& \Rightarrow p=1000 \mathrm{nPa}
\end{aligned}
$$

$$
\Rightarrow \text { yielding at } p=1000 \mathrm{MPa}
$$

$$
\text { on plane at } 45^{\circ} \text { bituree } \sigma_{11} \mathrm{cad} \sigma_{33}
$$

Condition C:

$$
\begin{aligned}
&\left|\sigma_{I}-\sigma_{\text {II }}\right|=|2 p-(-p)|=\sigma_{y} \\
& \Rightarrow 3 p=1500 \mathrm{MPa} \\
& \Rightarrow p=500 \mathrm{mPa} \\
&\left|\sigma_{\text {II }}-\sigma_{\text {III }}\right|=|-p-0.5 p|=\sigma_{y} \\
& \Rightarrow 1.5 p=1500 \mathrm{MPa} \\
& \Rightarrow p=1000 \mathrm{MPa} \\
&\left|\sigma_{\text {III }}-\sigma_{\text {I }}\right|=|0.5 p-2 p|=\sigma_{y} \\
& \Rightarrow 1.5 p=1500 \mathrm{MPa} \\
& \Rightarrow p=1000 \mathrm{MA}
\end{aligned}
$$

critical cate is rust (c)
\Rightarrow yialdingat $p=500 \mathrm{MPa}$ on plane at 45° between σ_{11} sud σ_{22}

Condition D:

$$
\begin{aligned}
&\left|\sigma_{I}-\sigma_{I}\right|=|5 p-0|=\sigma_{y} \\
& \Rightarrow 5 p=1500 \mathrm{MPa} \\
& \Rightarrow p p=300 \mathrm{MPa} \\
&\left|\sigma_{I}-\sigma_{\text {III }}\right|=|0-0.5 p|=\sigma_{y} \\
& \Rightarrow 0.5 p=1500 \mathrm{MPa} \\
& \Rightarrow p=3000 \mathrm{MPa} \\
&\left|\sigma_{I I}-\sigma_{I}\right|=|0.5 p-5 p|=\sigma_{y} \\
& \Rightarrow 4.5 p=1500 \mathrm{MPa} \\
& \Rightarrow p=333 \mathrm{MPa}
\end{aligned}
$$

cintical case is trust (D)
\Rightarrow yielding at $p=300 \mathrm{mPa}$ on plans at 45° to direction of principulutresrin $1-2$ plane and σ_{33}

* Kind this angle int- 2 plane by using:

$$
\begin{aligned}
& \theta_{p}=\frac{1}{2} \tan ^{-1}\left(\frac{2 \sigma_{12}}{\sigma_{11}-\sigma_{22}}\right) \\
&=\frac{1}{2} \tan ^{-1}\left(\frac{4 p}{p-(-4 p)}\right) \\
&=\frac{1}{2} \tan ^{-1}\left(\frac{4}{5}\right)^{2} \\
& \theta_{p}=\frac{1}{2}\left(38.7^{\circ}\right) \\
& \Rightarrow \theta_{p}=19.30
\end{aligned}
$$

(b) the voumises criterion is:

$$
\left(\sigma_{I}-\sigma_{I I}\right)^{2}+\left(\sigma_{I I}-\sigma_{I I}\right)^{2}+\left(\sigma_{I I}-\sigma_{I}\right)^{2}=2 \sigma_{4}^{2}
$$

Look at each centition, again.
Condition A: thy di static stress
Alduiff acer are zero, so ofuin
No Yield ding

Condition 3:

$$
\begin{aligned}
& \frac{\operatorname{tin} \text { 3: }}{(2 p-p)^{2}+(p-0.5 p)^{2}+(0.5 p-2 p)^{2}=2 \sigma_{y}^{2}} \\
& \Rightarrow p^{2}+0.25 p^{2}+2.25 p^{2}=2 \sigma_{y}^{2}
\end{aligned}
$$

Page 12 of 22

$$
\begin{aligned}
\Rightarrow 3.5 p^{2}= & (1500 \mathrm{MPa})^{2} \times 2 \\
\Rightarrow p= & \sqrt{\frac{2}{3.5}}(1500 \mathrm{MPa})=1134 \mathrm{mPa} \\
& \text { for (3) }: p=1134 \mathrm{mPa}
\end{aligned}
$$

condition C :

$$
\begin{aligned}
&(2 p-(-p))^{2}+(-p-0.5 p)^{2}+\left(0 . \sigma_{p}-2 p\right)^{2}=2 \sigma_{y}^{2} \\
& \Rightarrow p^{2}+2.25 p^{2}+2.25 p^{2}-2 \sigma_{y}^{2} \\
& \Rightarrow p=\sqrt{\frac{2}{13.5}} \sigma_{y} \\
& \Rightarrow \text { for (C) } p=577 \mathrm{Mpa}
\end{aligned}
$$

Cundition 0 :

$$
\begin{aligned}
& \frac{\text { dition } D:}{(5 p-0.5 p)^{2}+(0.5 p-0)^{2}+(0-5 p)^{2}=2 \sigma_{y}^{2}} \\
& \Rightarrow 20.25 p^{2}+0.25 p^{2}+25 p^{2}=2 \sigma_{y}^{2} \\
& \Rightarrow 45.5 p^{2}=2 \sigma_{y}^{2} \\
& \Rightarrow p=\sqrt{\frac{2}{45}} \sigma_{y^{2}}^{2} \\
& \Rightarrow \text { for (D): } p^{2}+314 M P a
\end{aligned}
$$

(c) For ench of the conditions the Tresca Cnitenicn fives a more cmuervatuve estimote of the yiel king lirad charact mistic, p (Jee sumen any fable that fillows). The one cate wherethis is nottone is Condixion A which ir a ayduostexic cuse and both criteria predictors yoeldiggarthir is a fundamentwe bafis for each. PAL

Summary:
Critical $p .(\mathrm{MPa})$

Condition	Tresca	van miser
A	-	-
B	1000	1134
C	500	577
D	300	314

The Trescacriterion confiders yielding on ATingle plane and thusthe two principal stress cieftingon thor plane. In entrant the vo Miser criterion involvesund interacts all the applied ux-esser and thur slightly higher valuer.

M14.3 Airplane fuselage

At limit $p=10$ psi (pressure intervention)

$$
\begin{aligned}
& \sigma_{\text {hoop }}=\sigma_{22}=\frac{p R}{t} \\
& \sigma_{\text {long }}=\sigma_{11}=\frac{p^{R}}{2 t}
\end{aligned}
$$

(a) Stress of material is sam of stress the to pressure and utes from empennage loads accou-try for 50% lvadtcarngring factor of skin
fo:

$$
\begin{align*}
& \sigma_{22}=\frac{1}{2}\left(\sigma_{22}\left(\operatorname{lin}_{p} t_{0}\right)\right) \tag{2}\\
& \sigma_{12}=\frac{1}{2}\left(\sigma_{12 \text { (applied }}\right)
\end{align*}
$$

using the pressure equations. At this limit conctition:

$$
\begin{aligned}
& \sigma_{22}\binom{\text { ditto }}{p}=\frac{10 \text { psi }(6 \mathrm{ft})(12 \dot{\mathrm{i}} / \mathrm{ft})}{0.035 \mathrm{~m}}=20,572 \mathrm{psi}
\end{aligned}
$$

Usirginture above:

$$
\begin{align*}
& \sigma_{11}=5143+\sigma_{11 \text { (applied }} \text { (psi] } \\
& \sigma_{22}=10,286 \text { psi } \\
& \sigma_{12}=\left(\sigma_{12} \text { (Appistiod) }\right) \quad[\text { (psi] })
\end{align*}
$$

recognizing that $\sigma_{\text {"AL }}$ and $\sigma_{12 A}$.r. are half of the applies d lucid titian. Now are the Trerca con dixon. As before.

$$
\left|\sigma_{I}-\sigma_{I I}\right|=\sigma_{y} \quad \sigma \quad\left|\sigma_{I}-\sigma_{I I}\right|=\sigma_{y} \sim\left|\sigma_{\underline{I I}}-\sigma_{ \pm}\right|=\sigma_{y}
$$

Here we have plane stress with $\sigma_{\text {III }}=0$, so this becomes:

$$
\begin{aligned}
& \left|\sigma_{I}-\sigma_{\text {II }}\right|=\sigma_{Y} \\
& \left|\sigma_{\text {II }}\right|=\sigma_{Y} \quad\left|\sigma_{\text {III }}\right|=\sigma_{Y}
\end{aligned}
$$

with $\sigma_{Y}=50 \mathrm{ksi}$
It is necessary to find the primeipalestresiar for the planorstrecrcase. Again (as in tiro) postern), use:

$$
\tau^{2}-\tau\left(\sigma_{11}+\sigma_{22}\right)+\left(\sigma_{11} \sigma_{22}-\sigma_{12}^{2}\right)=0
$$

and rind roots. Do so intis form. Use framentic solution for:

$$
\begin{aligned}
& t=\frac{-b \pm \sqrt{s^{2}-d_{a c}}}{2 a} \\
& \Rightarrow \sigma_{I, \sigma_{I}}=\frac{1}{2}\left\{\left(\sigma_{11}+\sigma_{22}\right) \pm\left[\left(\sigma_{11}+\sigma_{72}\right)^{2}-4\left(\sigma_{1,} \sigma_{22}-\sigma_{12}\right)^{2}\right]^{1 / 2}\right\}
\end{aligned}
$$

write out:

$$
\begin{aligned}
& \text { it out: } \\
& \begin{aligned}
\Rightarrow & =\frac{1}{2}\left\{\left(\sigma_{11}+\sigma_{22}\right) \pm\left[\sigma_{11}^{2}+2 \sigma_{11} \sigma_{22}+\sigma_{22}^{2}-4 \sigma_{11} \sigma_{22}+4 \sigma_{12}^{2}\right]^{1 / 2}\right\} \\
& =\frac{1}{2}\left\{\left(\sigma_{11}+\sigma_{22}\right) \pm\left[\sigma_{11}^{2}-2 \sigma_{11} \sigma_{22}+\sigma_{22}^{2}+4 \sigma_{12}^{2}\right]^{1 / 2}\right\}
\end{aligned}
\end{aligned}
$$

So:

$$
\begin{aligned}
& \sigma_{I}=\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)+\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}} \\
& \sigma_{I I}=\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)-\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}
\end{aligned}
$$

The Tresce condiximecon the rewritten using these expressions:

Page 16 of 22

$$
\begin{align*}
& \text { soksi }=\left|\sigma_{I}-\sigma_{I I}\right|=\left|2 \sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}\right| \tag{4}\\
& 50 \mathrm{ksi}=\left|\sigma_{I}\right|=\left|\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)+\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}\right| \tag{5}\\
& \text { soksi }=\left|\sigma_{I I}\right|=\left|\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)-\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}\right| \tag{6}
\end{align*}
$$

Now reurite therse in tenur ot the totalestreares from equation (1°), $\left(2^{\prime}\right)$ and (3°):
form (4)

$$
\begin{align*}
& \text { (4) ksi }=2 \sqrt{\sigma_{12 A T T}^{2}+\left(\frac{5143+\sigma_{1 A_{A . L}}-10,2 f 6}{2}\right)^{2}} \\
& \Rightarrow 50 \mathrm{ksi}=\sqrt{\sigma_{12 \text { A.T. }}^{2}+\left(\frac{\left.\sigma_{11 \text { A.L. }}-5143\right)^{2}}{2}\right.} \tag{4}
\end{align*}
$$

from (5)

$$
\begin{aligned}
& 50 \text { lesi }=\left|\left(\frac{5143+\sigma_{1, \text { A.C. }}+(0286}{2}\right)+\sqrt{\sigma_{\sigma_{\text {A.T. }}^{2}}^{2}+\left(\frac{\sigma_{1, A . C}-5743}{2}\right)^{2}}\right| \\
& \left.\Rightarrow 50 \mathrm{kSi}=\left\lvert\,\left(\frac{15,429+\sigma_{11 \text { A.C. }}}{2}\right)+\sqrt{\sigma_{12 A . T .}^{2}+\left(\frac{\sigma_{11 A . L}-5143}{2}\right)^{2}}\right.\right]
\end{aligned}
$$

condrim (6)

Now apply different valuer of $\sigma_{\text {or }}$ for unch carceand onteruinu the volinu of σ_{12} that canser faicargth en plot thek.
from equation (4).

$\sigma_{11 \text { A.C. }}$	$\sigma_{12 \text { A.T. }}=\sqrt{(50)^{2}-\left(\frac{\sigma_{11}}{2}-5.14\right)^{2}}$
0	± 24.9
$+10-10$	$\pm 24.9 \pm 23.8$
$+20-20$	$\pm 23.9 \pm 21.6$
$+30,-30$	$\pm 21.7, \pm 17.8$
$+40,-40$	$\pm 12.9, \pm 10.7$
$+50.1,-44.8$	0

trim equation (5):

fromequation (6):

Pcot the limitung liner
"Opecax youtrer enveloge" for fureloge maferial via Tresca condition with eimit prestarexlvedy accom ted for

(b) With the "Canrage tolepent" alppionch, we the bubic frocture meeh dinior equation:

$$
\sigma_{f}=\frac{K_{c}}{\sqrt{\pi a}}
$$

Here $2 a=0.25 \mathrm{in} \Rightarrow a=0.125 \mathrm{Li}^{\circ}$

$$
\begin{aligned}
& \Rightarrow \sigma_{f}=\frac{31 \mathrm{ksi} / \sqrt{\omega i}}{\sqrt{\pi(0.125 \mathrm{si})}} \\
& \quad \Rightarrow \sigma_{f}=49.5 \mathrm{ksi}
\end{aligned}
$$

Tuns if the stresr perpendicular to the crack exceuds 49.5 ksi , there is failure. thowever the crack cruld be orionted mang direuxion, so we must find the principalstrexer (i.e. the enaximum extensionalutresser) and then the related kirection for the werstcase. Confider the possible caser of the loader that are appliex
(1) Uurt pressure and thr se remeltatutrester.

Theni $\sigma_{11}=5,143$ psi

$$
\sigma_{22}=10,286 \mathrm{psi}
$$

(arper easclies)
Both are princ pal, rince aoshear steas is applied and botharewell selon the andicalvaleses of 4 sosi
(2) Considen presteure sthesces crith orterche to lengitusinal lood. Frosenbetore (i):

$$
\begin{aligned}
& \sigma_{11}=5143 \text { psi }+\sigma_{1 A_{A C .}} \\
& \sigma_{12}=10,286 p s i
\end{aligned}
$$

we see that σ_{22} is well below the criticel stress, sothe Cniterion here is:

$$
\begin{gather*}
\sigma_{11}=5.143 \mathrm{ksi}+\sigma_{11} \text { A.C. }<49.5 \mathrm{ksi} \\
\Rightarrow \sigma_{1 \text { A.C. }}<44.4 \mathrm{ksi} \tag{*}
\end{gather*}
$$

(3) All theree loads: pressure, longitulual, and forsimal. Furm betere (1% (2^{-}) (3^{\prime}) ondthentin previcer work to tu d the principal athertertor the tull case:

$$
\begin{align*}
& \sigma_{I}=\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)+\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}<49.5 \mathrm{ksi} \text { (7) } \tag{7}\\
& \sigma_{I I}=\left(\frac{\sigma_{11}+\sigma_{22}}{2}\right)=\sqrt{\sigma_{12}^{2}+\left(\frac{\sigma_{11}-\sigma_{22}}{2}\right)^{2}}<49.5 \mathrm{ksi}(\delta)
\end{align*}
$$

All strerser $二[k s i]$
Note that σ_{I} aiways is lauger then $\sigma_{\text {II }}$, su only (7) needs to bi considered. Firther wote that this is raly walid for tensile strerses.
As betore, assemble duta for (7), and then plot the se mith the other cendition (equation (\#))

Page 21 of Red $_{2}$ equaxicu ($>$) ael in [ksi]

plot:
"Openaxing stred envelype" for furelage matericl via doenge toleran tapporoch with limitpressure alrendy accucurtedtor

(c) Each of these approacher are vitterent criterice and theplotedo look nubutomxially differentor mang well be expected. The Tresca condition fiver the yield point while the deunafetolerent ayproach fover the steres at which a crack nill critically propegate this latter case occurs on ly tor tensile. rtresses wherear the Trerca condition cenricturs comprearrestersel ar well the domagectolen ant ayproach ficerthe fructest porsible operaxingarea.

M14.4 / D
2. G
3. A
4. H
5. B
6. F
7. E
8. C

