1. (35 %) A thin airfoil has an adjustable camberline defined by

$$Z(x) = h \left[1 - \left(\frac{x}{c} \right)^2 \right]$$

where h is the camberline height at the leading edge.

- a) Determine the coefficients A_0 , A_1 , A_2 , ... for this camberline, either by manipulation and inspection of dZ/dx, or by direct Fourier Analysis of dZ/dx. Assume there's also some arbitrary α as shown.
- b) Determine the airfoil's c_{ℓ} and $c_{m_{c/4}}$, as functions of h/c and α .
- c) Determine the zero-lift angle $\alpha_{L=0}$, as a function of h/c.

2. (40 %) A wing operating at velocity V_{∞} and air density ρ has the following circulation distribution:

$$\Gamma(y) = \Gamma_0 \left[1 - (2y/b)^2 \right]$$

- a) Determine the lift L.
- b) Determine the downwash velocity w(y). Evaluate w(0) at the center of the wing, and also w(b/4) halfway out. Roughly sketch $\Gamma(y)$ and w(y).
- c) Write down an expression for the induced drag D_i for this particular wing, but don't bother integrating it (too messy).
- d) Determine how both L and D_i will change for each of the following two cases:
- i) Γ_0 is doubled with the same b, and
- ii) b is doubled with the same Γ_0 .

3. (25 %) An elliptically-loaded wing with aspect ratio $A\!R=10$ has an airfoil with the following 2D profile drag polar:

$$c_d(c_\ell) = 0.025 + 0.015c_\ell^4$$

We will assume that $c_{\ell} = C_L$.

- a) Write an expression for the overall drag coefficient C_D of the wing.
- b) Determine the maximum lift/drag ratio C_L/C_D (or equivalently, the minimum C_D/C_L) that this wing can produce.
- c) The airplane using this wing has a wing loading of $W/S=10\,\mathrm{Pa}$. Determine the flight speed V it needs to fly so that it operates at its maximum lift/drag ratio. Assume $\rho=1.2\,\mathrm{kg/m^3}$.