Research Design & Variable Measurement

- Different ways of doing p.s. research
- Basic laws for doing research
- Social science vs. Natural science/engineering
- Components of research design
 - Side trip to data
- Causality
 - Side trip to types of research designs
- Seven things to avoid
The Road Map

Theory
 Empirical
 Causal
 Descriptive
 Positive
 Normative
 Philosophy
Different Ways of Doing Empirical Research

• Interpretive
 – *Verstehen*

• Small-\(N\) case study
 – Haphazard
 – Structured

• Large-\(N\) statistical analysis

• Interactions among these ways
Basic Laws of Doing Empirical Social Science Research I

- No clear path between interesting & researchable questions
- Path paved with observable implications
- Any research work doing contributes to a body of knowledge
- Most of the low-hanging fruit has been picked
Basic Laws of Doing Empirical Social Science Research II

• But there are other orchards
• Never under-estimate the ease of replication
• Build upon scalable ambitions
Social Vs. Natural Science & Engineering

• Reductionism

• Degree of reductionism

• Implications
 – Measures of association weak
 – Aggregates often better predictors

• Why we have statistics
 – Probabilities
 – Expected values
Major Components of Research Design

- Research question
- Theory
- Data
Research Question

• Importance
 – Not too general
 – Not too specific
 – Just right

• Contribute to literature
 – www.webofscience.com
Theory

• Def: A general statement of a proposition that argues why events occur as they do and/or predicts future outcomes as a f(prior conditions).

• General/concrete trade-off
• Observable implications

• Falsification
 – Karl popper
• Parsimony
 – Occam’s razor
Data

• Terms
 – Cases
 – Observations
 – Variables
 – Units of analysis

• Mapping between the abstract and concrete
 – Measures
 – Indicators
Side Trip to Measurement

• From abstraction to measure
• Sources of error
• What to do about error
The Mapping
Mapping from Abstraction to Measure

• Very abstract
 – Alienation and suicide
 – Moral decay and crime

• Less abstract
 – Democracy and peace
 – Party identification and voting
 – Fear of defeat and fundraising
 – Polarization and responsiveness
Sources of Error

- Conceptual or design error
- Bad breaks in random sampling
- Survey question wording
- Non-random out-selection
- Transcription errors
- Calculation & mechanization errors
What to Do About Error

• Practice safe data
 – Know where your data come from
 – Watch for anomalies
 – Use multiple measurement techniques
 – Collect as much data as possible and disaggregate
Causality

- Definitions of causality
- Problems in causal research
- Side trip to Campbell and Stanley
Definitions of Causality

• Mechanical
• Logical
• Statistical
 – Experimental paradigm
 – Expected values
Problems in Causal Research

- Theory
 - Confounding effects

- Design
 - Experimentalism is an ideal
 - Observationalism
 - “natural experiments”
 - Control variables
Donald Campbell and Julian Stanley

Experimental and Quasi-Experimental Designs for Research (1963)
Research design types

- One-shot case study
- One-group pre-test/post-test
- Static group comparison
- Pre-test/post-test with control group
- Solomon four-group design
- Post-test only experiment
One-shot Case Study

• Summary:
 X O

• Journalism
• Common sense
• “of no scientific value”
One-group Pre-test/post-test

• Summary:
 O X O

• Better than nothing
• Standard way of doing most research
Static group comparison

• Summary:

\[\begin{array}{c|c|c}
X & O_1 \\

O_2 \\
\end{array} \]

• Problems
 – Selection
 – Mutual causation

• This is most cross-sectional analysis
Pre-test/Post-test Control Group

• Summary:

\[
\begin{align*}
R & O^1_T
\times
O^2_T \\
\hline
R & O^1_C
& O^2_C
\end{align*}
\]

• Effect of treatment:

\[
[O^2_T - O^1_T] - [O^2_C - O^1_C]
\]
Solomon Four-Group Design

• Summary:

 R O X O
 R O O
 R X O
 R O

• This allow you to control for the effect of the experiment itself
Post-test only experiment

• Summary:

 \[
 \begin{array}{ccc}
 R & X & O \\
 R & O \\
 R & O \\
 \end{array}
 \]

• No selection
• No prior observation
• Classical scientific and agricultural experimentalism
Last word: Things to Avoid

• Colinearity
• Sampling on the dependent variable
• Constant explanatory variables
• Constant dependent variables
• Measurement error
• Excluded variable bias
• Endogeneity