

Types of Variables

Key measures Describing data		
	Moment	Non-mean based measure
Center	Mean	Mode, median
Spread	Varia (standard deviation)	Range Interquartile range
Skew	Skewness	--
Peaked	Kurtosis	-

Key distinction

Population vs. Sample Notation

Population	vs.	Sample
Greeks		Romans
μ, σ, β		s, b

Variance, Standard Deviation

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n} \equiv \sigma^{2} \\
& \sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\mu\right)^{2}}{n}} \equiv \sigma
\end{aligned}
$$

Commands in STATA for getting univariate statistics

- summarize varname
- summarize varname, detail
- histogram varname, bin() start() width() density/fraction/frequency normal
- graph box varnames
- tabulate [NB: compare to table]

Normal distribution

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu) / 2 \sigma^{2}}
$$

- Skewness = 0
- Kurtosis = 3

The z-score
or the
"standardized score"

$$
Z=\frac{x-\bar{x}}{\sigma_{x}}
$$

Example of Sophomore Test

 Scores- High School and Beyond, 1980: A Longitudinal Survey of Students in the United States (ICPSR Study 7896)
- totalscore $=\%$ of questions answered correctly minus penalty for guessing
- recodedtype $=$ (1=public school, 2=religious private, 3 = non-sectarian private)

Graph totalscore

Main issues with histograms

- Proper level of aggregation
- Non-regular data categories

A note about histograms with unnatural categories

From the Current Population Survey (2000), Voter and Registration Survey
How long (have you/has name) lived at this address?
-9 No Response
-3 Refused
-2 Don't know
-1 Not in universe
1 Less than 1 month
1-6 months
3 7-11 months
4 1-2 years
5 3-4 years
65 years or longer

Solution, Step 1

Map artificial category onto "natural" midpoint
-9 No Response \rightarrow missing
-3 Refused \rightarrow missing
-2 Don't know \rightarrow missing
-1 Not in universe \rightarrow missing
1 Less than 1 month $\rightarrow 1 / 24=0.042$
2 1-6 months $\rightarrow 3.5 / 12=0.29$
3 7-11 months $\rightarrow 9 / 12=0.75$
4 1-2 years $\rightarrow 1.5$
5 3-4 years $\rightarrow 3.5$
65 years or longer $\rightarrow 10$ (arbitrary)

So, what's wrong with them

- For non-time series data, hard to get a comparison among groups; the eye is very bad in judging relative size of circle slices
- For time series, data, hard to grasp crosstime comparisons

Draw the box plots for the different types of schools
graph box totalscore, by(recodedtype)

Three words about pie charts: don't use them

Some words about graphical presentation

- Aspects of graphical integrity (following Edward Tufte, Visual Display of Quantitative Information)
\square Represent number in direct proportion to numerical quantities presented
\square Write clear labels on the graph
\square Show data variation, not design variation
\square Deflate and standardize money in time series

