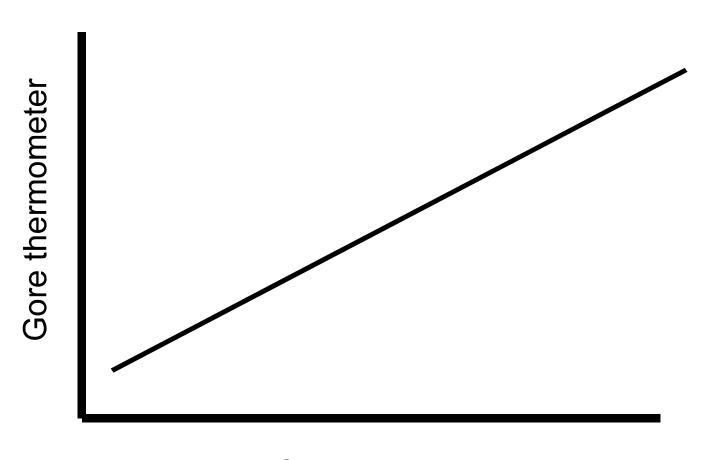
Addressing Alternative Explanations: Multiple Regression

17.871 Spring 2012

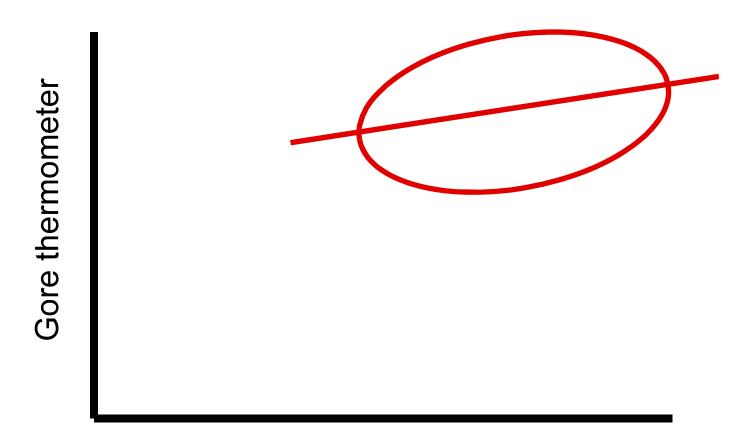


Did Clinton hurt Gore example

- Did Clinton hurt Gore in the 2000 election?
 - □ Treatment is not liking Bill Clinton
- How would you test this?

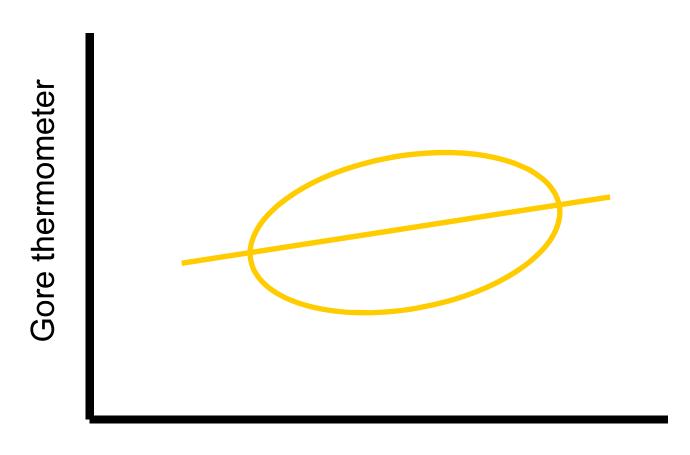
10

Bivariate regression of Gore thermometer on Clinton thermometer

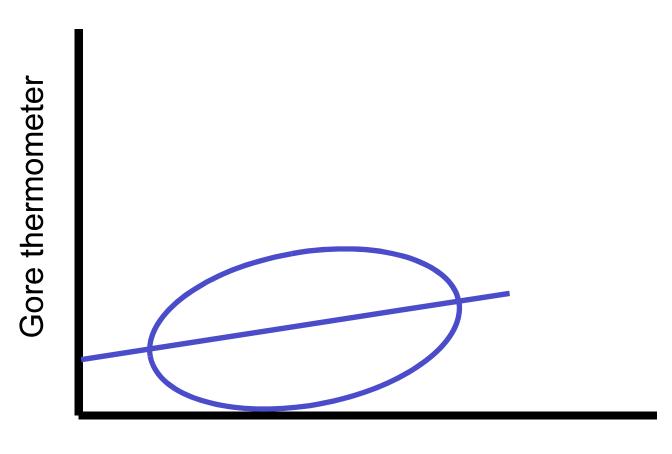


Did Clinton hurt Gore example

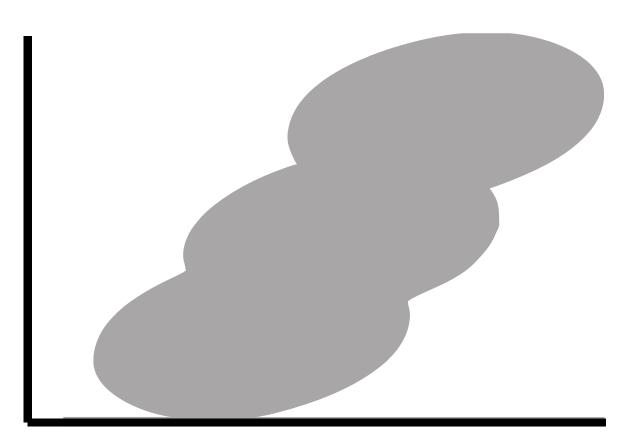
- What alternative explanations would you need to address?
- Nonrandom selection into the treatment group (disliking Clinton) from many sources
- Let's address one source: party identification
- How could we do this?
 - Matching: compare Democrats who like or don't like Clinton; do the same for Republicans and independents
 - □ Multivariate regression: control for partisanship statistically
 - Also called multiple regression, Ordinary Least Squares (OLS)
 - Presentation below is intuitive

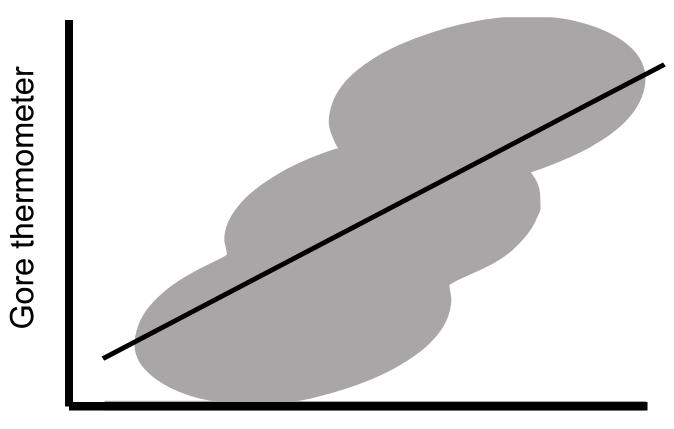


Democratic picture

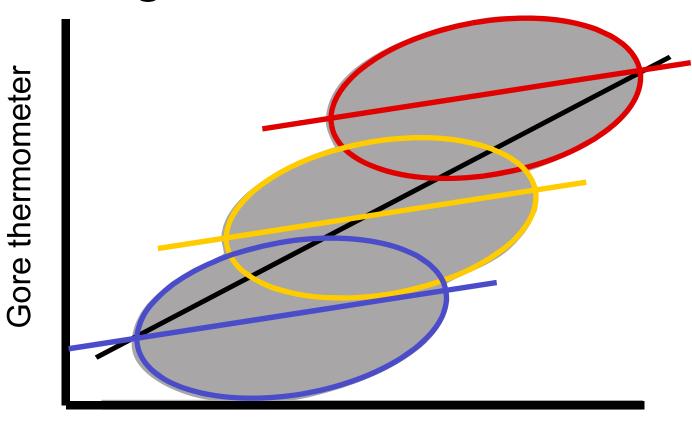


Independent picture


Republican picture

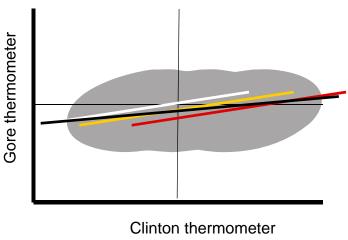

Combined data picture

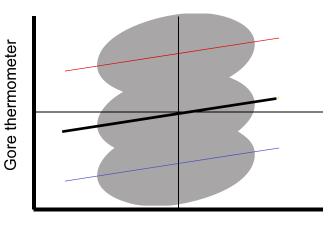
Gore thermometer


ÞΑ

Combined data picture with regression: bias!

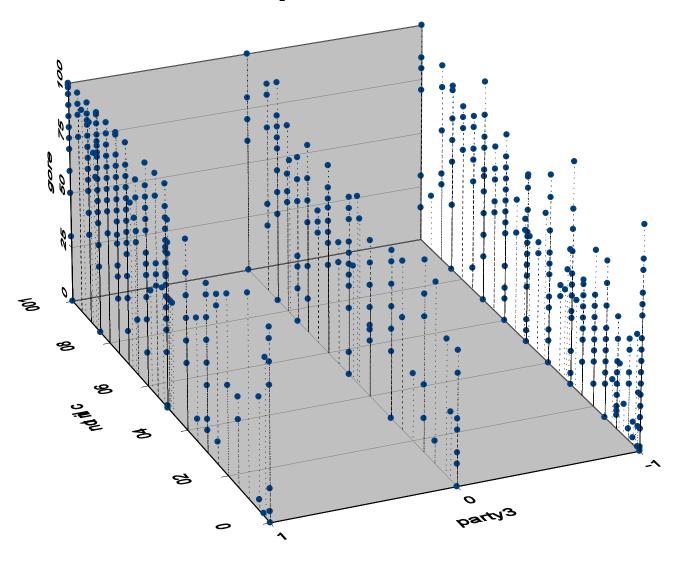
r,e


Combined data picture with "true" regression lines overlaid

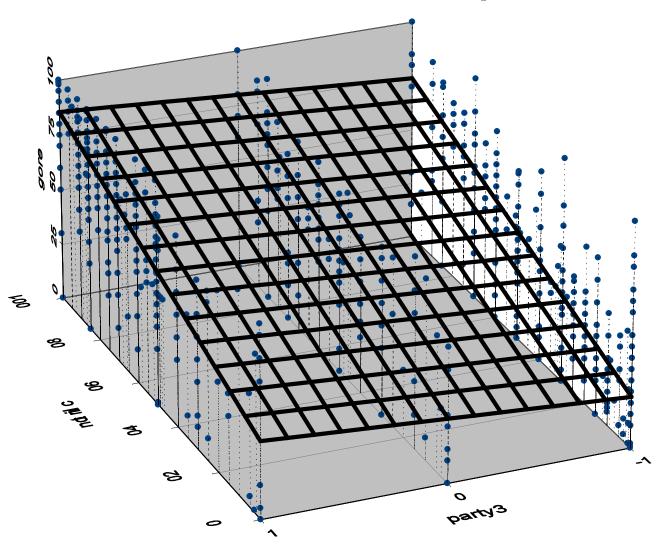

M

Tempting yet wrong normalizations

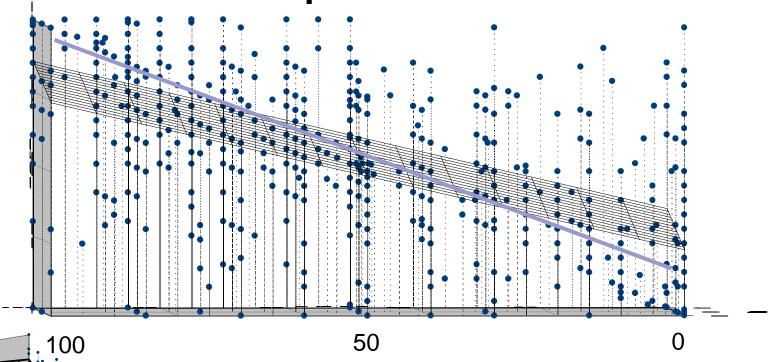
Subtract the Gore therm. from the avg. Gore therm. score

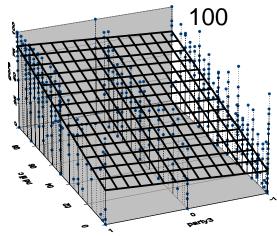


Subtract the Clinton therm. from the avg. Clinton therm. score

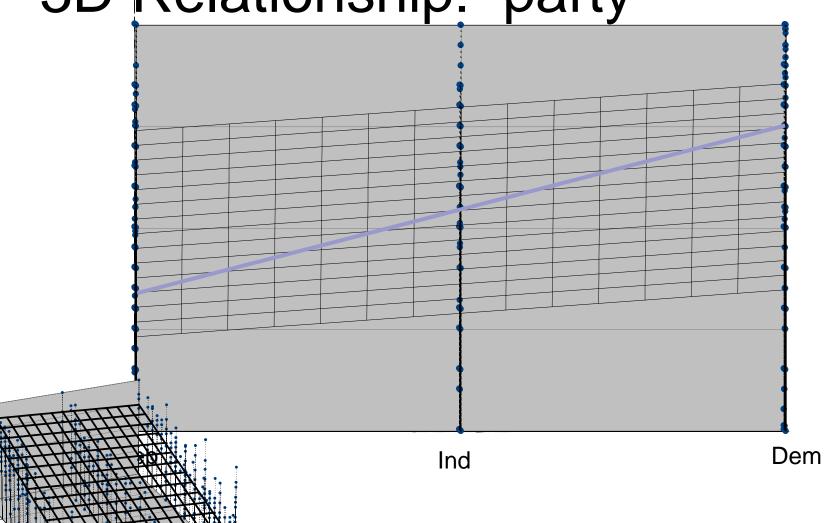


Clinton thermometer

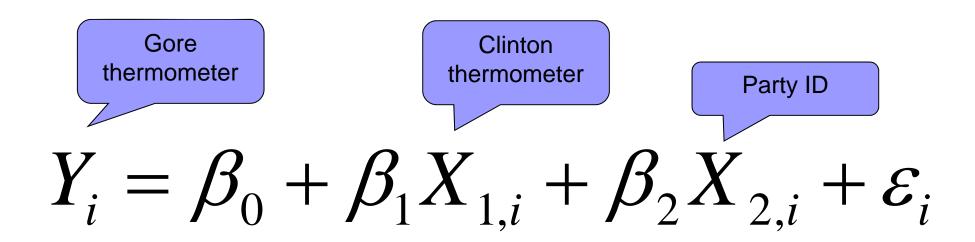

3D Relationship



3D Linear Relationship



3D Relationship: Clinton



M

The Linear Relationship between Three Variables

STATA:

reg y x1 x2 reg gore clinton party3

be.

Multivariate slope coefficients

Clinton effect (on Gore) in bivariate (*B*) regression

Are Gore and Party ID related?

Bivariate estimate:

$$\hat{\beta}_1^B = \frac{\text{cov}(X_1, Y)}{\text{var}(X_1)} \text{ vs.}$$

Multivariate estimate:

$$\hat{\beta}_{1}^{M} = \frac{\text{cov}(X_{1}, Y)}{\text{var}(X_{1})} - \hat{\beta}_{2}^{M} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{1})}$$

Clinton effect (on Gore) in multivariate (*M*) regression Are Clinton and Party ID related?

When does
$$\hat{\beta}_1^B = \hat{\beta}_1^M$$
? Obviously, when $\hat{\beta}_2^M \frac{\text{cov}(X_1, X_2)}{\text{var}(X_1)} = 0$

X₁ is Clinton thermometer, X₂ is PID, and Y is Gore thermometer

be.

The Slope Coefficients

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (\overline{Y} - Y_{i})(\overline{X}_{1} - X_{1,i})}{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})^{2}} - \hat{\beta}_{2} \frac{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})(\overline{X}_{2} - X_{2,i})}{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})^{2}} \text{ and }$$

$$\hat{\beta}_{2} = \frac{\sum_{i=1}^{n} (\overline{Y} - Y_{i})(\overline{X}_{2} - X_{1,i})}{\sum_{i=1}^{n} (\overline{X}_{2} - X_{2,i})} - \hat{\beta}_{1} \frac{\sum_{i=1}^{n} (\overline{X}_{1} - X_{1,i})(\overline{X}_{2} - X_{2,i})}{\sum_{i=1}^{n} (\overline{X}_{2} - X_{2,i})^{2}}$$

 X_1 is Clinton thermometer, X_2 is PID, and Y is Gore thermometer

The Slope Coefficients More Simply

$$\hat{\beta}_{1} = \frac{\text{cov}(X_{1}, Y)}{\text{var}(X_{1})} - \hat{\beta}_{2} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{1})} \text{ and }$$

$$\hat{\beta}_{2} = \frac{\text{cov}(X_{2}, Y)}{\text{var}(X_{2})} - \hat{\beta}_{1} \frac{\text{cov}(X_{1}, X_{2})}{\text{var}(X_{2})}$$

 X_1 is Clinton thermometer, X_2 is PID, and Y is Gore thermometer

20

The Matrix form

y ₁
y ₂
У _n

1	X _{1,1}	X _{2,1}	 $X_{k,1}$
1	X _{1,2}	X _{2,2}	 X _{k,2}
1			
1	X _{1,n}	X _{2,n}	 $X_{k,n}$

$$\beta = (X'X)^{-1}X'y$$

The Output

. reg gore clinton party3

Source	SS	df	MS		Number of obs F(2, 1742)	= 1745 = 1048.04
Model Residual + Total	629261.91 522964.934 1152226.84	1742 30	4630.955 0.209492 60.68053		Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.5461
gore	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
clinton party3 _cons	.5122875 5.770523 28.6299	.0175952 .5594846 1.025472	29.12 10.31 27.92	0.000	.4777776 4.673191 26.61862	.5467975 6.867856 30.64119

<u>Interpretation of clinton effect</u>: *Holding constant party identification*, a one-point increase in the Clinton feeling thermometer is associated with a .51 increase in the Gore thermometer.

M

Separate regressions

	(1)	(2)	(3)
Intercept	23.1	55.9	28.6
Clinton	0.62		0.51
Party		15.7	5.8

Is the Clinton effect causal?

- That is, should we be convinced that negative feelings about Clinton really hurt Gore?
- No!
 - The regression analysis has only ruled out linear nonrandom selection on party ID.
 - Nonrandom selection into the treatment could occur from
 - Variables other than party ID, or
 - Reverse causation, that is, feelings about Gore influencing feelings about Clinton.
 - Additionally, the regression analysis may not have entirely ruled out nonrandom selection even on party ID because it may have assumed the wrong functional form.
 - E.g., what if nonrandom selection on strong Republican/strong Democrat, but not on weak partisans

Other approaches to addressing confounding effects?

- Experiments
- Difference-in-differences designs
- Others?

Summary: Why we control

- Address alternative explanations by removing confounding effects
- Improve efficiency

b/A

Why did the Clinton Coefficient change from 0.62 to 0.51

```
. corr gore clinton party, cov (obs=1745)
```

```
gore clinton party3
-----
gore | 660.681
clinton | 549.993 883.182
party3 | 13.7008 16.905 .8735
```

The Calculations

$$\hat{\beta}_{1}^{B} = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} = \frac{549.993}{883.182} = 0.6227$$

$$\hat{\beta}_{1}^{M} = \frac{\text{cov}(gore, clinton)}{\text{var}(clinton)} - \hat{\beta}_{2}^{M} \frac{\text{cov}(clinton, party)}{\text{var}(clinton)}$$

$$=\frac{549.993}{883.182} - 5.7705 \frac{16.905}{883.182}$$

$$= 0.6227 - 0.1105$$

$$=0.5122$$

Drinking and Greek Life Example

- Why is there a correlation between living in a fraternity/sorority house and drinking?
 - □ Greek organizations often emphasize social gatherings that have alcohol. The effect is being in the Greek organization itself, not the house.
 - ☐ There's something about the House environment itself.

Dependent variable: Times Drinking in Past 30 Days

	-	-	
 I have never had 	t a drink Skip to C22 (pag	ge 10)	
Not in the past y	ear - Skip to C22 (page 10	0)	
○ More than 30 da	ys ago, but in the past year 🗕	→ Skip to C17 (page 8)
More than a wee	ek ago, but in the past 30 days	Go to C9	
Within the last w	eek - Go to C9		
_			
n how many occasions have you	had a drink of alcohol in the past 3	30 days? (Choose o	one answer.)
Did not drink in the last 30 days	4 O 6 to 9 occasions	6	20 to 39 occasions
1 to 2 occasions	← ○ 10 to 19 occasions	7.	0 40 or more occasions
to the first of the second second	/		

C8. When did you last have a drink (that is more than just a few sips)?

- . infix age 10-11 residence 16 greek 24 screen 102 timespast30 103 howmuchpast30 104 gpa 278-279 studying 281 timeshs 325 howmuchhs 326 socializing 283 stwgt 99 475-493 weight99 494-512 using da3818.dat,clear (14138 observations read)
- . recode timespast30 timeshs (1=0) (2=1.5) (3=4) (4=7.5)
 (5=14.5) (6=29.5) (7=45)
 (timespast30: 6571 changes made)

(timeshs: 10272 changes made)

. replace timespast30=0 if screen<=3
(4631 real changes made)</pre>

. tab timespast30

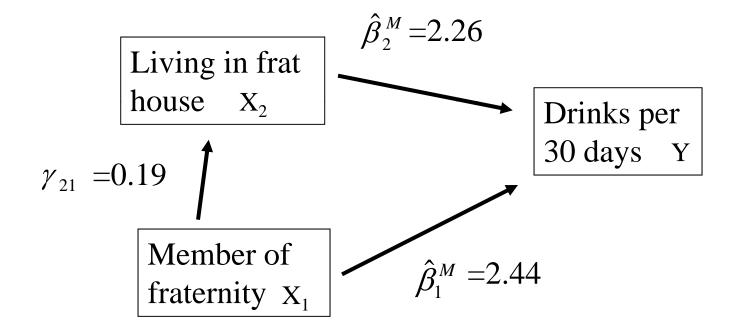
timespast30	Freq.	Percent	Cum.
0 1.5 4 7.5 14.5 29.5	4,652 2,737 2,653 1,854 1,648 350	33.37 19.64 19.03 13.30 11.82 2.51	33.37 53.01 72.04 85.34 97.17 99.68
45	45	0.32	100.00
Total	13,939	100.00	

Key explanatory variables

- Live in fraternity/sorority house
 - □ Indicator variable (dummy variable)
 - □ Coded 1 if live in, 0 otherwise
- Member of fraternity/sorority
 - □ Indicator variable (dummy variable)
 - □ Coded 1 if member, 0 otherwise

M

Three Regressions

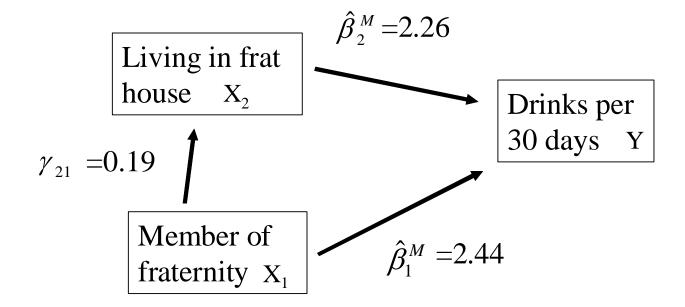

Dependent variable: number of times drinking in past 30 days				
Live in frat/sor house (indicator variable)	4.44 (0.35)		2.26 (0.38)	
Member of frat/sor (indicator variable)		2.88 (0.16)	2.44 (0.18)	
Intercept	4.54	4.27	4.27	
	(0.56)	(0.059)	(0.059)	
R2	.011	.023	.025	
N	13,876	13,876	13,876	

What is the substantive interpretation of the coefficients?

Note: Standard errors in parentheses. Corr. Between living in frat/sor house and being a member of a Greek organization is .42

100

The Picture



be.

Accounting for the total effect

$$\hat{\beta}_{1}^{B} = \hat{\beta}_{1}^{M} + \hat{\beta}_{2}^{M} \gamma_{21}$$

Total effect = Direct effect + indirect effect

Accounting for the effects of frat house living and Greek membership on drinking

Effect	Total	Direct	Indirect
Member of	2.88	2.44	0.44
Greek org.		(85%)	(15%)
Live in frat/	4.44	2.26	2.18
sor. house		(51%)	(49%)