Sampling and Inference

The Quality of Data and Measures

2012

Why do we sample?

 Cost/ benefitBenefit (precision)

Effects of samples

- Obvious: influences marginals
- Less obvious
- Allows effective use of time and effort
- Effect on multivariate techniques
- Sampling of independent variable: greater precision in regression estimates
- Sampling on dependent variable: bias

Sampling on Independent Variable

Sampling on Dependent Variable

Sampling

Consequences for Statistical
 Inference

Statistical Inference:

Learning About the Unknown From the Known

- Reasoning forward: distributions of sample means, when the population mean, s.d., and n are known.
- Reasoning backward: learning about the population mean when only the sample, s.d., and n are known

Reasoning Forward

Exponential Distribution Example

Consider 10 random samples, of $n=100$ apiece

Sample	mean
1	$253,396.9$
2	198.789 .6
3	$271,074.2$
4	$238,928.7$
5	$280,657.3$
6	$241,369.8$
7	$249,036.7$
8	$226,422.7$
9	$210,593.4$
10	$212,137.3$

Consider 10,000 samples of $n=$ 100

$\mathrm{N}=10,000$
Mean $=249,993$
s.d. $=28,559$

Skewness $=0.060$
Kurtosis $=2.92$

Consider 1,000 samples of various sizes

10	100	1000

Difference of means example

State 2
Mean $=300,000$

Take 1,000 samples of 10 , of each state, and compare them

First 10 samples			
Sample	State 1		State 2
1	311,410	$<$	365,224
2	184,571	$<$	243,062
3	468,574	$>$	438,336
4	253,374	$<$	557,909
5	220,934	$>$	189,674
6	270,400	$<$	284,309
7	127,115	$<$	210,970
8	253,885	$<$	333,208
9	152,678	$<$	314,882
10	222,725	$>$	152,312

State $2>$ State 1: 673 times

State $2>$ State 1: 909 times

State $2>$ State 1: 1,000 times

Another way of looking at it: The distribution of $\mathrm{Inc}_{2}-\operatorname{Inc}_{1}$

$n=10$	$n=100$	$n=1,000$

Play with some simulations

- http://onlinestatbook.com/stat sim/sampling dist/index.html

Reasoning Backward

When you know $n, \overline{\mathrm{X}}$, and s,
but want to say something about μ

Central Limit Theorem

As the sample size n increases, the distribution of the mean $\overline{\mathrm{X}}$ of a random sample taken from practically any population approaches a normal distribution, with mean μ and standard deviation σ / \sqrt{n}

Calculating Standard Errors

In general:

std. err. $=\frac{s}{\sqrt{n}}$

Most important standard errors

Mean	$\frac{s}{\sqrt{n}}$
Proportion	$\sqrt{\frac{p(1-p)}{n}}$
Diff. of 2 means	$\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
Diff. of 2 proportions	$\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$
Diff of 2 means (paired data)	$\frac{s_{d}}{\sqrt{n}}$
Regression (slope) coeff.	$\frac{\frac{s . e . r}{\sqrt{n-1}} \times \frac{1}{s_{s_{x}}}}{}$

Using Standard Errors, we can construct "confidence intervals"

- Confidence interval (ci): an interval between two numbers, where there is a certain specified level of confidence that a population parameter lies
- $\mathrm{ci}=$ sample parameter \pm multiple * sample standard error

Constructing Confidence Intervals

- Let's say we draw a sample of tuitions from 15 private universities. Can we estimate what the average of all private university tuitions is?
- $\mathrm{N}=15$
- Average $=29,735$
- S.d. $=2,196$
- S.e. $=\frac{s}{\sqrt{n}}=\frac{2,196}{\sqrt{15}}=567$

$$
\mathrm{N}=15 ; \text { avg. }=29,735 ; \text { s.d. }=2,196 ; \text { s.e. }=\mathrm{s} / \sqrt{ } \mathrm{n}=567
$$

The Picture

Confidence Intervals for Tuition Example

- 68% confidence interval $=29,735+567=$ [29,168 to 30,302]
- 95% confidence interval $=29,735 \pm 2 * 567=$ [28,601 to 30,869]
- 99% confidence interval $=29,735 \pm 3 * 567=$ [28,034 to 31,436]

What if someone (ahead of time) had said, "I think the average tuition of major research universities is $\$ 25 \mathrm{k}$ "?

- Note that $\$ 25,000$ is well out of the 99% confidence interval, [28,034 to 31,436]
- Q : How far away is the $\$ 25 \mathrm{k}$ estimate from the sample mean?
- A: Do it in z-scores: $(29,735-25,000) / 567=$ 8.35

Constructing confidence intervals of proportions

- Let us say we drew a sample of 1,500 adults and asked them if they approved of the way Barack Obama was handling his job as president. (March 23-25, 2012 Gallup Poll) Can we estimate the $\%$ of all American adults who approve?
- $\mathrm{N}=1500$
- $\mathrm{p}=.43$
- s.e. $=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{.43(1-.43)}{1500}}=0.013$
http://www.gallup.com/poll/113980/gallup-daily-obama-job-approval.aspx

$$
\mathrm{N}=1,500 ; \text { p. }=.43 ; \text { s.e. }=\sqrt{ } \mathrm{p}(1-\mathrm{p}) / \mathrm{n}=.013
$$

The Picture

Confidence Intervals for Obama approval example

- 68% confidence interval $=.43 \pm .013=$
[. 42 to .44]
- 95% confidence interval $=.43 \pm 2 * .013=$ [. 40 to .46]
- 99% confidence interval $=.43 \pm 3^{*} .013=$
[. 39 to .47]

What if someone (ahead of time) had said, "I think Americans are equally

divided in how they think about Obama."

- Note that 50% is well out of the 99% confidence interval, [39\% to 47\%]
- Q: How far away is the 50% estimate from the sample proportion?
-A : Do it in z-scores: $(.43-.5) / .013=-5.3$

Constructing confidence intervals of differences of means

- Let's say we draw a sample of tuitions from 15 private and public universities. Can we estimate what the difference in average tuitions is between the two types of universities?
- $\mathrm{N}=15$ in both cases
- Average $=29,735$ (private); 5,498 (public); diff $=24,238$
- s.d. $=2,196$ (private); 1,894 (public)
- s.e. $=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{4,822,416}{15}+\frac{3,587,236}{15}}=749$
$\mathrm{N}=15$ twice; diff $=24,238 ;$ s.e. $=749$

The Picture

Confidence Intervals for difference of tuition means example

- 68% confidence interval $=24,238 \pm 749=$ [23,489 to 24,987]
- 95% confidence interval $=24,238 \pm 2 * 749=$ [22,740 to 25,736]
- 99% confidence interval $=24,238 \pm 3 * 749=$
- [21,991 to 26,485$]$

What if someone (ahead of tıme) had said, "Private universities are no more expensive than public universities"

- Note that $\$ 0$ is well out of the 99% confidence interval, [\$21,991 to \$26,485]
- Q: How far away is the $\$ 0$ estimate from the sample proportion?
- A: Do it in z-scores: $(24,238-0) / 749=32.4$

Constructing confidence intervals of difference of proportions

- Let us say we drew a sample of 1,500 adults and asked them if they approved of the way Barack Obama was handling his job as president. (March 23-25, 2012 Gallup Poll). We focus on the 1000 who are either independents or Democrats. Can we estimate whether independents and Democrats view Obama differently?
- $\mathrm{N}=600$ ind; 400 Dem.
- $\mathrm{p}=.43$ (ind.); 82 (Dem.); diff $=.39$
- s.e. $=$

$$
\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}=\sqrt{\frac{.43(1-.43)}{600}+\frac{.82(1-.82)}{400}}=.03
$$

diff. p. $=.39$; s.e. $=.03$

The Picture

Confidence Intervals for Obama Ind/Dem approval example

- 68% confidence interval $=.39 \pm .03=$ [. 36 to .42]
- 95% confidence interval $=.39 \pm 2 * .03=$ [. 33 to .45]
- 99% confidence interval $=.39 \pm 3 * .03=$
[. 30 to .48]

What if someone (ahead of time) had said, "I think Democrats and
 Independents are equally unsupportive of Obama"?

- Note that 0% is well out of the 99% confidence interval, [30\% to 48\%]
- Q: How far away is the 0% estimate from the sample proportion?
- A: Do it in z-scores: (.39-0)/.03 = 13

Constructing confidence intervals of regression coefficients

- Let's look at the relationship between the midterm seat loss by the President's party at midterm and the President's Gallup poll rating

$$
\begin{aligned}
& \text { Slope }=1.97 \\
& \mathrm{~N}=14 \\
& \text { s.e.r. }=13.8 \\
& \mathrm{~s}_{\mathrm{x}}=8.14 \\
& \text { s.e. } \text { slope }= \\
& \frac{\text { s.e.r. }}{\sqrt{n-1}} \times \frac{1}{s_{x}}=\frac{13.8}{\sqrt{13}} \times \frac{1}{8.14}=0.47
\end{aligned}
$$

$$
\mathrm{N}=14 ; \text { slope }=1.97 ; \text { s.e. }=0.45
$$

The Picture

Confidence Intervals for regression example

- 68% confidence interval $=1.97 \pm 0.47=$
[1.50 to 2.44]
- 95% confidence interval $=1.97 \pm 2 * 0.47=$ [1.03 to 2.91]
- 99% confidence interval $=1.97 \pm 3 * 0.47=$ [0.62 to 3.32]

What if someone (ahead of time) had said, "There is no relationship
between the president's popularity and how his party's House members do at midterm"?

- Note that 0 is well out of the 99% confidence interval, [0.62 to 3.32]
- Q: How far away is the 0 estimate from the sample proportion?
- A: Do it in z-scores: $(1.97-0) / 0.47=4.19$

The Stata output

. reg loss gallup if year>1948

