Recitation 10

The matrix of a linear transformation

Definition 0.1. A vector space is a set V together with operations $+: V \times V \rightarrow V$ and $\cdot: \mathbb{R} \times V \rightarrow V$ called "addition" and "scalar multiplication," respectively, satisfying various axioms, which should be intuitive by now.

Definition 0.2. We say that vectors $v_{1}, \ldots, v_{n} \in V$ are linearly dependent if there exists $c_{1}, \ldots, c_{n} \in$ \mathbb{R} not all zero, with $c_{1} v_{1}+\ldots+c_{n} v_{n}=0$. If v_{1}, \ldots, v_{n} are not linearly dependent then we say they are linearly independent.

Definition 0.3. $v_{1}, \ldots, v_{n} \in V$ are said to be a basis for V if v_{1}, \ldots, v_{n} are linearly independent and any $v \in V$ can be written as a linear combination of v_{1}, \ldots, v_{n} : that is $v=c_{1} v_{1}+\ldots+c_{n} v_{n}$ for come $c_{1}, \ldots, c_{n} \in \mathbb{R}$.

Definition 0.4. If V and W are vector spaces, a linear transformation $T: V \longrightarrow W$ is a function such that $T(v+c w)=T(v)+c T(w)$ for any $v, w \in V$ and $c \in \mathbb{R}$.

Definition 0.5. Suppose V and W are vector spaces with bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}, respectively. Then for each $j \in\{1, \ldots, n\}, T\left(v_{j}\right)$ is a linear combination of the w_{1}, \ldots, w_{m}. So there exist

$$
a_{1, j}, \ldots, a_{m, j} \text { with } T v_{j}=a_{1, j} w_{1}+a_{2, j} w_{2}+\ldots+a_{m, j} w_{m}
$$

The matrix of T with respect to the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} is the $m \times n$ matrix A, with entries $a_{i, j}$.

The most basic example of the matrix of a linear transformation

1. \mathbb{R}^{n} is a vector space:

$$
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \text { and } c\left(x_{1}, \ldots, x_{n}\right)=\left(c x_{1}, \ldots, c x_{n}\right) .
$$

2. Let $e_{i} \in \mathbb{R}^{n}$ be the vector with 1 in the $i^{\text {th }}$ entry and 0 in the other entries. Then e_{1}, \ldots, e_{n} are linearly independent in \mathbb{R}^{n}.
3. e_{1}, \ldots, e_{n} is a basis for \mathbb{R}^{n}.
4. An $m \times n$ matirx A defines a linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ by $T(x)=A x$.
5. \mathbb{R}^{n} has basis e_{1}, \ldots, e_{n} and \mathbb{R}^{m} has basis $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$, where we use the prime to highlight the vectors are in \mathbb{R}^{m} as opposed to \mathbb{R}^{n}, but they have an identical definition. We have

$$
A e_{j}=a_{1, j} e_{1}^{\prime}+a_{2, j} e_{2}^{\prime}+\ldots+a_{m, j} e_{m}^{\prime}
$$

and so the matrix of the linear transformation $T(x)=A x$ with respect to the bases, e_{1}, \ldots, e_{n} and $e_{1}^{\prime} \ldots, e_{m}^{\prime}$ is A.

Changing basis

Definition 0.6. If V is a vector space and v_{1}, \ldots, v_{n} and $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ are two bases for V. Then there exists an invertible $n \times n$ matrix B with entries $b_{i, j}$ such that

$$
v_{j}^{\prime}=b_{1, j} v_{1}+b_{2, j} v_{2}+\ldots+b_{n, j} v_{n}
$$

B is said to be the basis change matrix from v_{1}, \ldots, v_{n} to $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$.
Suppose V and W are vector spaces. Suppose that V has bases v_{1}, \ldots, v_{n} and $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$, that W has bases w_{1}, \ldots, w_{m} and $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$, and that $T: V \longrightarrow W$ is a linear transformation.

If T has matrix A with respect to the bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m}, then T has matrix $C^{-1} A B$ with respect to the bases $v_{1}^{\prime}, \ldots, v_{n}^{\prime}$ and $w_{1}^{\prime}, \ldots, w_{m}^{\prime}$, where B and C denote the basis change matrices from the unprimed bases to the primed bases of V and W, respectively.

The most basic example of changing basis

Suppose A is an $m \times n$ matrix. Then we have seen that the linear transformation $T(v)=A v$ has matrix A with respect to the standard bases e_{1}, \ldots, e_{n} and $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$. The matrix of T with respect to another pair of bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{m} is given by $C^{-1} A B$ where

$$
B=\left(v_{1}|\cdots| v_{n}\right) \text { and } C=\left(w_{1}|\cdots| w_{m}\right) .
$$

SVD

Here is an algorithm that will always work for the SVD.
Suppose you are given an $m \times n$ matrix A.

1. Let $\lambda_{1}, \ldots, \lambda_{i}$ be the non-zero eigenvalues of $A^{T} A$ and $\lambda_{i+1}, \ldots, \lambda_{n}$ be the zero eigenvalues of $A^{T} A$. Choose corresponding ORTHONORMAL eigenvectors v_{1}, \ldots, v_{n} for $A^{T} A$.
2. Let $\sigma_{j}=\sqrt{\lambda_{j}}$. Let u_{1}, \ldots, u_{i} be given by $u_{j}=A v_{j} / \sigma_{j}$.
3. Let u_{i+1}, \ldots, u_{m} be an ORTHONORMAL basis of $N\left(A A^{T}\right)$.
4. The SVD is

$$
\left(u_{1}|\cdots| u_{m}\right) \Sigma\left(v_{1}|\cdots| v_{n}\right)^{T}
$$

where Σ is an $m \times n$ matrix with (j, j)-entry given by σ_{j} and all other entries 0 .
If $m<n$ it is a little quicker to do the following.

1. Let $\lambda_{1}, \ldots, \lambda_{i}$ be the non-zero eigenvalues of $A A^{T}$ and $\lambda_{i+1}, \ldots, \lambda_{m}$ be the zero eigenvalues of $A A^{T}$. Choose corresponding ORTHONORMAL eigenvectors u_{1}, \ldots, u_{m} for $A A^{T}$.
2. Let $\sigma_{j}=\sqrt{\lambda_{j}}$. Let v_{1}, \ldots, v_{i} be given by $v_{j}=A^{T} u_{j} / \sigma_{j}$.
3. Let v_{i+1}, \ldots, v_{n} be an ORTHONORMAL basis of $N\left(A^{T} A\right)$.

Recitation 10 questions

Question 1

Let $A=\left(\begin{array}{lll}2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right)$.
(a) Compute $A(1,1,1)^{T}, A(1,1,0)^{T}, A(1,-1,0)^{T}$. Write each as a linear combination of the vectors $(1,1)^{T}$ and $(0,1)^{T}$.
(b) Find the matrix of the linear transformation $T(x)=A x$ with respect to the bases $(1,1,1)^{T}$, $(1,1,0)^{T},(1,-1,0)^{T}$ and $(1,1)^{T},(0,1)^{T}$ by using the definition of the matrix of a linear transformation.
(c) Find the matrix of the linear transformation $T(x)=A x$ with respect to the bases $(1,1,1)^{T}$, $(1,1,0)^{T},(1,-1,0)^{T}$ and $(1,1)^{T},(0,1)^{T}$ by using basis change matrices.

Question 2

Suppose A is 3×2 matrix with the property that

$$
A(4,5)^{T}=(1,2,3)^{T} \text { and } A(3,4)^{T}=(3,2,1)^{T}
$$

(a) What is the matrix of $T(x)=A x$ with respect to the bases

$$
(4,5)^{T},(3,4)^{T} \text { and }(1,2,3)^{T},(3,2,1)^{T},(0,1,0)^{T}
$$

(b) Use the basis change formula to write the matrix you just calculated as $C^{-1} A B$.
(c) What is A ?

Question 3

Let V be the set of cubic polynomials $V=\left\{f(x)=a x^{3}+b x^{2}+c x+d: a, b, c, d \in \mathbb{R}\right\}$.
(a) Recall why V is a vector space; what happens to the coefficients under addition and scalar multiplication?
(b) Define $T_{1}(f(x))=f^{\prime}(x)$. Is this a linear transformation $V \longrightarrow V$? Why?
(c) Define $T_{2}(f(x))=f(x+1)$. Is this a linear transformation $V \longrightarrow V$? Why?
(d) Define $T_{3}(f(x))=x^{3} f(1 / x)$. Is this a linear transformation $V \longrightarrow V$? Why?
(e) Recall that $1, x, x^{2}, x^{3}$ is a basis for V. Does this make sense to you?
(f) What is $T_{1}(1), T_{1}(x), T_{1}\left(x^{2}\right), T_{1}\left(x^{3}\right)$? What is the matrix of T_{1} with respect to the basis $1, x, x^{2}, x^{3}$ (using this as a basis for the domain and codomain)?
(g) What is the matrix of T_{2} with respect to the basis $1, x, x^{2}, x^{3}$?
(h) What is the matrix of T_{3} with respect to the basis $1, x, x^{2}, x^{3}$?
(i) What is the matrix of T_{1} with respect to the basis $1, x-1,(x-1)(x-2), x\left(x^{2}-\frac{9}{2} x+6\right)$?

Question 4

Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right)$.

1. Find the eigenvalues $\lambda_{1} \neq 0, \lambda_{2}$ and unit eigenvectors v_{1}, v_{2} of $A^{T} A$.
2. Let $\sigma_{1}=\sqrt{\lambda_{1}}, u_{1}=A v_{1} / \sigma_{1}$. Verify that u_{1} is a unit eigenvector for $A A^{T}$ with eigenvalue λ_{1}.
3. Extend u_{1} to an orthonormal basis u_{1}, u_{2}.
4. Check that

$$
A=\left(u_{1} \mid u_{2}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & 0
\end{array}\right)\left(v_{1} \mid v_{2}\right)^{T} .
$$

