Recitation 10

The matrix of a linear transformation

Definition 0.1. A vector space is a set V together with operations $+: V \times V \to V$ and $\cdot: \mathbb{R} \times V \to V$ called "addition" and "scalar multiplication," respectively, satisfying various axioms, which should be intuitive by now.

Definition 0.2. We say that vectors $v_1, \ldots, v_n \in V$ are *linearly dependent* if there exists $c_1, \ldots, c_n \in \mathbb{R}$ not all zero, with $c_1v_1 + \ldots + c_nv_n = 0$. If v_1, \ldots, v_n are not linearly dependent then we say they are *linearly independent*.

Definition 0.3. $v_1, \ldots, v_n \in V$ are said to be a *basis* for V if v_1, \ldots, v_n are linearly independent and any $v \in V$ can be written as a linear combination of v_1, \ldots, v_n : that is $v = c_1v_1 + \ldots + c_nv_n$ for come $c_1, \ldots, c_n \in \mathbb{R}$.

Definition 0.4. If V and W are vector spaces, a *linear transformation* $T: V \longrightarrow W$ is a function such that T(v + cw) = T(v) + cT(w) for any $v, w \in V$ and $c \in \mathbb{R}$.

Definition 0.5. Suppose V and W are vector spaces with bases v_1, \ldots, v_n and w_1, \ldots, w_m , respectively. Then for each $j \in \{1, \ldots, n\}, T(v_j)$ is a linear combination of the w_1, \ldots, w_m . So there exist

 $a_{1,j}, \ldots, a_{m,j}$ with $Tv_j = a_{1,j}w_1 + a_{2,j}w_2 + \ldots + a_{m,j}w_m$.

The matrix of T with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_m is the $m \times n$ matrix A, with entries $a_{i,j}$.

The most basic example of the matrix of a linear transformation

- 1. \mathbb{R}^n is a vector space: $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$ and $c(x_1, \dots, x_n) = (cx_1, \dots, cx_n)$.
- 2. Let $e_i \in \mathbb{R}^n$ be the vector with 1 in the *i*th entry and 0 in the other entries. Then e_1, \ldots, e_n are linearly independent in \mathbb{R}^n .
- 3. e_1, \ldots, e_n is a basis for \mathbb{R}^n .
- 4. An $m \times n$ matrix A defines a linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ by T(x) = Ax.
- 5. \mathbb{R}^n has basis e_1, \ldots, e_n and \mathbb{R}^m has basis e'_1, \ldots, e'_m , where we use the prime to highlight the vectors are in \mathbb{R}^m as opposed to \mathbb{R}^n , but they have an identical definition. We have

$$Ae_j = a_{1,j}e'_1 + a_{2,j}e'_2 + \ldots + a_{m,j}e'_m$$

and so the matrix of the linear transformation T(x) = Ax with respect to the bases, e_1, \ldots, e_n and $e'_1 \ldots, e'_m$ is A.

Changing basis

Definition 0.6. If V is a vector space and v_1, \ldots, v_n and v'_1, \ldots, v'_n are two bases for V. Then there exists an invertible $n \times n$ matrix B with entries $b_{i,j}$ such that

$$v'_{j} = b_{1,j}v_1 + b_{2,j}v_2 + \ldots + b_{n,j}v_n$$

B is said to be the *basis change matrix* from v_1, \ldots, v_n to v'_1, \ldots, v'_n .

Suppose V and W are vector spaces. Suppose that V has bases v_1, \ldots, v_n and v'_1, \ldots, v'_n , that W has bases w_1, \ldots, w_m and w'_1, \ldots, w'_m , and that $T: V \longrightarrow W$ is a linear transformation.

If T has matrix A with respect to the bases v_1, \ldots, v_n and w_1, \ldots, w_m , then T has matrix $C^{-1}AB$ with respect to the bases v'_1, \ldots, v'_n and w'_1, \ldots, w'_m , where B and C denote the basis change matrices from the unprimed bases to the primed bases of V and W, respectively.

The most basic example of changing basis

Suppose A is an $m \times n$ matrix. Then we have seen that the linear transformation T(v) = Av has matrix A with respect to the standard bases e_1, \ldots, e_n and e'_1, \ldots, e'_m . The matrix of T with respect to another pair of bases v_1, \ldots, v_n and w_1, \ldots, w_m is given by $C^{-1}AB$ where

$$B = \left(v_1 \middle| \cdots \middle| v_n\right)$$
 and $C = \left(w_1 \middle| \cdots \middle| w_m\right)$.

SVD

Here is an algorithm that will always work for the SVD. Suppose you are given an $m \times n$ matrix A.

- 1. Let $\lambda_1, \ldots, \lambda_i$ be the non-zero eigenvalues of $A^T A$ and $\lambda_{i+1}, \ldots, \lambda_n$ be the zero eigenvalues of $A^T A$. Choose corresponding ORTHONORMAL eigenvectors v_1, \ldots, v_n for $A^T A$.
- 2. Let $\sigma_j = \sqrt{\lambda_j}$. Let u_1, \ldots, u_i be given by $u_j = Av_j/\sigma_j$.
- 3. Let u_{i+1}, \ldots, u_m be an ORTHONORMAL basis of $N(AA^T)$.
- 4. The SVD is

$$\left(u_1\bigg|\cdots\bigg|u_m\right)\Sigma\left(v_1\bigg|\cdots\bigg|v_n\right)^T$$

where Σ is an $m \times n$ matrix with (j, j)-entry given by σ_j and all other entries 0.

If m < n it is a little quicker to do the following.

- 1. Let $\lambda_1, \ldots, \lambda_i$ be the non-zero eigenvalues of AA^T and $\lambda_{i+1}, \ldots, \lambda_m$ be the zero eigenvalues of AA^T . Choose corresponding ORTHONORMAL eigenvectors u_1, \ldots, u_m for AA^T .
- 2. Let $\sigma_j = \sqrt{\lambda_j}$. Let v_1, \ldots, v_i be given by $v_j = A^T u_j / \sigma_j$.
- 3. Let v_{i+1}, \ldots, v_n be an ORTHONORMAL basis of $N(A^T A)$.

Recitation 10 questions

Question 1

Let $A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 5 \end{pmatrix}$.

- (a) Compute $A(1,1,1)^T$, $A(1,1,0)^T$, $A(1,-1,0)^T$. Write each as a linear combination of the vectors $(1,1)^T$ and $(0,1)^T$.
- (b) Find the matrix of the linear transformation T(x) = Ax with respect to the bases $(1, 1, 1)^T$, $(1, 1, 0)^T$, $(1, -1, 0)^T$ and $(1, 1)^T$, $(0, 1)^T$ by using the definition of the matrix of a linear transformation.
- (c) Find the matrix of the linear transformation T(x) = Ax with respect to the bases $(1,1,1)^T$, $(1,1,0)^T$, $(1,-1,0)^T$ and $(1,1)^T$, $(0,1)^T$ by using basis change matrices.

Question 2

Suppose A is 3×2 matrix with the property that

 $A(4,5)^T = (1,2,3)^T$ and $A(3,4)^T = (3,2,1)^T$.

(a) What is the matrix of T(x) = Ax with respect to the bases

 $(4,5)^T$, $(3,4)^T$ and $(1,2,3)^T$, $(3,2,1)^T$, $(0,1,0)^T$.

- (b) Use the basis change formula to write the matrix you just calculated as $C^{-1}AB$.
- (c) What is A?

Question 3

Let V be the set of cubic polynomials $V = \{f(x) = ax^3 + bx^2 + cx + d : a, b, c, d \in \mathbb{R}\}.$

- (a) Recall why V is a vector space; what happens to the coefficients under addition and scalar multiplication?
- (b) Define $T_1(f(x)) = f'(x)$. Is this a linear transformation $V \longrightarrow V$? Why?
- (c) Define $T_2(f(x)) = f(x+1)$. Is this a linear transformation $V \longrightarrow V$? Why?
- (d) Define $T_3(f(x)) = x^3 f(1/x)$. Is this a linear transformation $V \longrightarrow V$? Why?
- (e) Recall that $1, x, x^2, x^3$ is a basis for V. Does this make sense to you?
- (f) What is $T_1(1), T_1(x), T_1(x^2), T_1(x^3)$? What is the matrix of T_1 with respect to the basis $1, x, x^2, x^3$ (using this as a basis for the domain and codomain)?
- (g) What is the matrix of T_2 with respect to the basis $1, x, x^2, x^3$?
- (h) What is the matrix of T_3 with respect to the basis $1, x, x^2, x^3$?
- (i) What is the matrix of T_1 with respect to the basis 1, x 1, (x 1)(x 2), $x(x^2 \frac{9}{2}x + 6)$?

Question 4

Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$.

- 1. Find the eigenvalues $\lambda_1 \neq 0$, λ_2 and unit eigenvectors v_1 , v_2 of $A^T A$.
- 2. Let $\sigma_1 = \sqrt{\lambda_1}$, $u_1 = Av_1/\sigma_1$. Verify that u_1 is a unit eigenvector for AA^T with eigenvalue λ_1 .
- 3. Extend u_1 to an orthonormal basis u_1, u_2 .
- 4. Check that

$$A = (u_1|u_2) \begin{pmatrix} \sigma_1 & 0\\ 0 & 0 \end{pmatrix} (v_1|v_2)^T.$$