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Imagine that you have never seen matrices. On the principle that examples are amazingly powerful, we
study two matricesA andC . The reader is requested to be exceptionally patient, suspending all prior
experience—and suspending also any hunger for precision and proof. Please allow a partial understanding
to be established first.

The first sections of this paper represent an imaginary lecture, very near the beginning of a linear
algebra course. That lecture shows by example where the course is going. The key ideas of linear algebra
(and the key words) come very early, to point the way. My own course now includes this lecture, and
Notes 1-6 below are addressed to teachers.

A first example Linear algebra can begin with three specific vectorsa1, a2, a3:
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The fundamental operation on vectors is to takelinear combinations. Multiply these
vectorsa1, a2, a3 by numbersx1, x2, x3 and add. This produces the linear combinationx1a1 C x2a2 C

x3a3 D b:
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Step 2 is to rewrite that vector equation as a matrix equationAx D b. Puta1, a2, a3 into the columns of a
matrix and putx1, x2, x3 into a vector:
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Key point A timesx is exactlyx1a1 C x2a2 C x3a3, a combination of the columns. This definition of
Ax brings a crucial change in viewpoint. At first, thexs were multiplying theas. Now, the matrixA is
multiplying x. The matrix acts on the vectorx to produce a vectorb:
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When the xs are known, the matrixA takes their differences. We could imagine an
unwrittenx0 D 0, and put inx1 � x0 to complete the pattern.A is adifference matrix.

Note 1 Multiplying a matrix times a vector is the crucial step. If students have seenAx before, it was
row times column. In examples they are free to compute that way (as I do). “Dot product with rows” gives
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the same answer as “combination of columns”. When the combinationx1 a1 C x2 a2 C x3 a3 is computed
one component at a time, we are using the rows.

The example illustrates how the sameAx arrives both ways. Differences likex2 � x1 come from row
times column. Combining the columns ofA is probably new to the class:good. The relation of the rows
to the columns is truly at the heart of linear algebra.

Note 2 Three basic questions in linear algebra, and their answers,show why the column description of
Ax is so essential:

� When does a linear systemAx D b have a solution?

Ax D b asks us to expressb as a combination of the columns ofA. So there is a solution exactly
whenb is in thecolumn spaceof A.

� When are vectorsa1; : : : ; an linearly independent?

The combinations ofa1,...,an are the vectorsAx. For independence,Ax D 0 must have only the
zero solution. Thenullspaceof A must contain only the vectorx D 0.

� How do you expressb as a combination of basis vectors?

Put those basis vectors into the columns ofA. SolveAx D b.

Note 3 The reader may object that we have only answered questions byintroducing new words. My
response is, those ideas of column space and nullspace and basis are crucial definitions in this subject.
The student moves to a higher level—a subspace level—by understanding these words. We are constantly
putting vectors into the columns of a matrix, and then working with that matrix.

I don’t accept that inevitably “The fog rolls in” when linearindependence is defined [1]. The concrete
way to dependence vs. independence is throughAx D 0: many solutions or only the solutionx D 0. This
comes immediately in returning to the example of specifica1, a2, a3.

Suppose the numbersx1; x2; x3 are not known butb1; b2; b3 are known. ThenAx D b becomes an
equation forx, not an equation forb. We start with the differences (thebs) and ask whichxs have those
differences. This is a new viewpoint ofAx D b, and linear algebra is always interested first inb D 0:
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x1 D 0

x2 D 0

x3 D 0

(3)

For this matrix, the only solution toAx D 0 is x D 0. That may seem automatic but it’s not. A key word
in linear algebra (we are foreshadowing its importance) describes this situation. These column vectorsa1,
a2, a3 areindependent. Their combinationx1a1 C x2a2 C x3a3 is Ax D 0 only when all thexs are zero.

Move now to nonzero differencesb1 D 1, b2 D 3, b3 D 5. Is there a choice ofx1, x2, x3 that produces
those differences1; 3; 5? Solving the three equations in forward order, thexs are1; 4; 9:
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This casex D 1; 4; 9 has special interest. When thebs are the odd numbers in order, thexs are the perfect
squares in order. But linear algebra is not number theory—forget that special case ! For anyb1, b2, b3

there is a neat formula forx1, x2, x3:
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This general solution includes the examples withb D 0; 0; 0 (when x D 0; 0; 0) and
b D 1; 3; 5 (whenx D 1; 4; 9). One more insight will complete the example.

We started with a linear combination ofa1, a2, a3 to getb. Now b is given and equation (5) goes
backward to findx. Write that solution with three new vectors whose combination givesx:
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This is beautiful, to see asum matrixS in the formula forx. The equationAx D b is solved byx D Sb.
The matrixS is the “inverse” of the matrixA. The difference matrix is inverted by the sum matrix.Where
A took differences ofx1; x2; x3, the new matrixS takes sums ofb1; b2; b3.

Note 4 I believe there is value innaming these matrices. The words “difference matrix” and “sum
matrix” tell how they act. It is the action of matrices, when we formAx andCx andSb, that makes linear
algebra such a dynamic and beautiful subject.

The linear algebra symbol for the inverse matrix isA�1 (not 1=A). ThusS D A�1 finds x from b.
This example shows how linear algebra goes in parallel with calculus. Sums are the inverse of differences,
and integration is the inverse of differentiation:

S D A�1 Ax D
dx

dt
D b.t/ is solved by x.t/ D Sb D
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The integral starts atx.0/ D 0, exactly as the sum started atx0 D 0.

The second example This example begins with almost the same three vectors—onlyone component is
changed:
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The combinationx1c1 C x2c2 C x3c3 is again a matrix multiplicationCx:
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With the new vector in the third column,C is a “cyclic” difference matrix. Instead ofx1 � 0 we have
x1 � x3. The differences ofxs “wrap around” to give the newbs. The inverse direction begins with
b1; b2; b3 and asks forx1; x2; x3.
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We always start with0; 0; 0 as thebs. You will see the change: nonzeroxs can have zero differences.
As long as thexs are equal, all their differences will be zero:
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The zero solutionx D 0 is included (whenx1 D 0). But1; 1; 1 and2; 2; 2 and�; �; � are also solutions—
all these constant vectors have zero differences and solveCx D 0. The columnsc1; c2; c3 aredependent
and not independent.

In the row-column description ofAx, we have found a vectorx D .1; 1; 1/ that is perpendicular to
every row ofA. The columns combine to giveAx D 0 whenx is perpendicular to every row.

This misfortune produces a new difficulty, when we try to solveCx D b:
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The three left sides add to zero, becausex3 is now cancelled by�x3. So thebs on the right side must add
to zero. There is no solution like equation (5) for everyb1, b2, b3. There is no inverse matrix likeS to
givex D Sb. The cyclic matrixC is not invertible.

Summary Both examples began by putting vectors into the columns of a matrix. Combinations of the
columns (with multipliersx) becameAx andCx. Difference matricesA andC (noncyclic and cyclic)
multipliedx—that was an important switch in thinking. The details of those column vectors madeAx D b

solvable for allb, while Cx D b is not always solvable. The words that express the contrast betweenA

andC are a crucial part of the language of linear algebra:

The vectorsa1, a2, a3 are independent.
The nullspace forAx D 0 contains onlyx D 0.
The equationAx D b is solved byx D Sb.
The square matrixA has the inverse matrixS D A�1.

The vectorsc1, c2, c3 are dependent.
The nullspace forCx D 0 contains every “constant vector”x1, x1, x1.
The equationCx D b cannot be solved unlessb1 C b2 C b3 D 0.
C has no inverse matrix.

A picture of the three vectors,a1; a2; a3 on the left andc1; c2; c3 on the right, explains the difference
in a useful way. On the left, the three directions areindependent. The three arrows don’t lie in a plane.
The combinationsx1a1 C x2a2 C x3a3 produce every three-dimensional vectorb. The good multipliers
x1; x2; x3 are given byx D Sb.

On the right, the three arrows do lie in a plane. The vectorsc1; c2; c3 aredependent. Each vector has
components adding to1 � 1 D 0, so all combinations of these vectors will haveb1 C b2 C b3 D 0 (this is
the equation for the plane). The differencesx1 � x3 andx2 � x1 andx3 � x2 can never be1; 1; 1 because
those differences add to zero.
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Note 5 Almost unconsciously, one way of teaching a new subject is illustrated by these examples.The
ideas and the words are used before they are fully defined. I believe we learn our own language this way—
by hearing words, trying to use them, making mistakes, and eventually getting it right. A proper definition
is certainly needed, it is not at all an afterthought. But maybe it is an afterword.

Note 6 Allow me to close these lecture ideas by returning to Note 1:Ax is a combination of the columns
of A. Extend that matrix-vector multiplication tomatrix-matrix: If the columns ofB areb1; b2; b3 then
the columns ofAB areAb1; Ab2; Ab3.

The crucial fact about matrix multiplication is that .AB/C D A.BC /. By the previous sentence
we may prove this fact by considering one column vectorc.

Left side .AB/c D ŒAb1 Ab2 Ab3�
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Right side A.Bc/ D A.c1b1 C c2b2 C c3b3/: (11)

In this way,.AB/C D A.BC / brings out the even more fundamental fact that matrix multiplication is
linear: .10/ D .11/.

Expressed differently, the multiplicationAB has been defined to produce the composition rule:AB

acting onc is equal toA acting onB acting onc.

Time after time, this associative law is the heart of short proofs. I will admit that these “proofs by
parenthesis” are almost the only ones I present in class. Here are examples of.AB/C D A.BC / at
three key points in the course. (I don’t always use the ominous wordproof in the video lectures [2] on
ocw.mit.edu, but the reader will see through this loss of courage.)

� If AB D I andBC D I thenC D A.

Right inverseD Left inverse C D .AB/C D A.BC / D A

� If yTA D 0 theny is perpendicular to everyAx in the column space.

Nullspace ofAT ? column space ofA yT.Ax/ D .yTA/x D 0

� If an invertibleB contains eigenvectorsb1; b2; b3 of A, thenB�1AB is diagonal.

Multiply AB by columns AŒb1 b2 b3� D ŒAb1 Ab2 Ab3� D Œ�1b1 �2b2 �3b3�
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Then separate thisAB into B times the eigenvalue matrixƒ:

AB D Œ�1b1 �2b2 �3b3� D Œb1 b2 b3�
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AB D Bƒ gives the diagonalizationB�1AB D ƒ. Equivalently it produces the factorization
A D BƒB�1. Parentheses are not necessary in any of these triple factorizations:

Spectral theorem for a symmetric matrix A D QƒQT

Elimination on a symmetric matrix A D LDLT

Singular Value Decomposition of any matrix A D U †V T

One final comment: Factorizations express the central ideasof linear algebra in a very effective
way. The eigenvectors of a symmetric matrix can be chosen orthonormal:QTQ D I in the spectral
theoremA D QƒQT. For all matrices, eigenvectors ofAAT andATA are the columns ofU andV

in the Singular Value Decomposition. And our favorite rule.AAT/A D A.ATA/ is the key step in
establishing that SVD, long after this early lecture...

These orthonormal vectorsu1; :::; um and v1; :::; vn are perfect bases for theFour Fundamental
Subspaces: the column space and nullspace ofA andAT. Those subspaces become the organizing
principle of the course [2]. The Fundamental Theorem connects their dimensions to the rank ofA.
The flow of ideas is from numbers to vectors to subspaces. Eachlevel comes naturally, and everyone
can get it—by seeing examples.
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