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Imagine that you have never seen matrices. On the prindipleeixamples are amazingly powerful, we
study two matricesA andC. The reader is requested to be exceptionally patient, sdsapg all prior
experience—and suspending also any hunger for precismpraf. Please allow a partial understanding
to be established first.

The first sections of this paper represent an imaginary lectery near the beginning of a linear
algebra course. That lecture shows by example where thee®igoing. The key ideas of linear algebra
(and the key words) come very early, to point the way. My owarse now includes this lecture, and
Notes 1-6 below are addressed to teachers.

A first example Linear algebra can begin with three specific vectarsz,, as:

0 0
a); = —1 ap = 1 az = 0
—1 1

The fundamental operation on vectors is to takeear combinations Multiply these
vectorsay, a,, a; by numbersyy, x,, x3 and add. This produces the linear combinatiea; + x,a, +
X3d3 = b:

1 0 0 X1 by
X1 —1 + X5 1 + X3 0 = X — X1 = bz . (1)
0 ~1 1 X3 — X3 bs

Step 2 is to rewrite that vector equation as a matrix equatios= b. Putay, a,, as into the columns of a
matrix and putxy, x,, x3 into a vector:

X1
Vectorx = X
X3

Matrix A = a, ap; das = —

O =

0
1
—1

—_— O O

Key point A timesx is exactlyx;a; + x,a, + x3as, a combination of the columngd his definition of
Ax brings a crucial change in viewpoint. At first, the were multiplying the:zs. Now, the matrix4 is
multiplying x. The matrix acts on the vectarto produce a vectap:

I 00 X1 X1 by
Ax =b Ax = —1 1 0 X2 = Xy — X1 = b2 . (2)
0 —1 1 X3 X3 — Xo b3
When the xs are known, the matrix4A takes their differences. We could imagine an

unwrittenx, = 0, and put inx; — xo to complete the patterrd is adifference matrix

Note 1 Multiplying a matrix times a vector is the crucial step. ladents have seenx before, it was
row times columnin examples they are free to compute that way (as | do). “Dadyct with rows” gives
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the same answer as “combination of columns”. When the coatibimx; a; + x, a, + x3 a3 is computed
one component at a time, we are using the rows.

The example illustrates how the same arrives both ways. Differences like — x; come from row
times column. Combining the columns dfis probably new to the clasgood The relation of the rows
to the columns is truly at the heart of linear algebra.

Note 2 Three basic questions in linear algebra, and their answiasy why the column description of
Ax is so essential:

¢ When does a linear systeAx = b have a solution?

Ax = b asks us to expredgsas a combination of the columns df So there is a solution exactly
whenb is in thecolumn spacef A.

e When are vectors,, ..., a, linearly independent?

The combinations of,...a, are the vectorsix. For independencedx = 0 must have only the
zero solution. Thewllspaceof 4 must contain only the vectar = 0.

e How do you express as a combination of basis vectors?
Put those basis vectors into the columnsiofSolveAx = b.

Note 3 The reader may object that we have only answered questionmgroglucing new words. My
response is, those ideas of column space and nullspace aisdaba crucial definitions in this subject.
The student moves to a higher level—a subspace level—bystadheling these words. We are constantly
putting vectors into the columns of a matrix, and then wagkinth that matrix.

| don’t accept that inevitably “The fog rolls in” when linesdependence is defined [1]. The concrete
way to dependence vs. independence is throtigh= 0: many solutions or only the solution= 0. This
comes immediately in returning to the example of speaifia.,, as.

Suppose the numbexs, x,, x3 are not known bub,, b,, b3 are known ThenAx = b becomes an
equation forx, not an equation fob. We start with the differences (tles) and ask whickxs have those
differences. This is a new viewpoint dfx = b, and linear algebra is always interested firsk ig 0:

X1 0 X1 = 0
Ax =0 Ax = X2 — X1 = 0 . Then X, =0 (3)
X3 — Xp 0 X3 = 0

For this matrix, the only solution tdx = 0 is x = 0. That may seem automatic but it's not. A key word
in linear algebra (we are foreshadowing its importancegess this situation. These column vectos
a,, az areindependentTheir combinationc a; + xa, + x3a3 is Ax = 0 only when all thexs are zero.

Move now to nonzero differencés = 1, b, = 3, b3 = 5. Is there a choice of,, x,, x5 that produces
those differences, 3, 5? Solving the three equations in forward order, tisearel, 4, 9:

X1 1 X1 1
Ax =b X2—x1 | =1 3 leads to X =1 4 |. 4)
X3 — Xo 5 X3 9



This casex = 1, 4,9 has special interest. When the are the odd numbers in order, theare the perfect
squares in order. But linear algebra is not number theorygetathat special case! For any, b,, b;
there is a neat formula for;, x,, x3:

X1 by X1 by
X2 — X1 = bz leads to X2 = bl + bz . (5)
X3 — Xz b3 X3 by 4 by + b3

This general solution includes the examples with = 0,0,0 (when x = 0,0,0) and

b =1,3,5(whenx = 1, 4,9). One more insight will complete the example.

We started with a linear combination of, a,, as to geth. Now b is given and equation (5) goes
backward to findc. Write that solution with three new vectors whose comboragivesx:

0 0 1 00 by
1 1 1 I 11 b3

This is beautiful, to see sum matrixS in the formula forx. The equatioMx = b is solved byx = Sb.
The matrixS is the “inverse” of the matrixd. The difference matrix is inverted by the sum matkiXhere
A took differences af,, x,, x3, the new matrixX§ takes sums di;, b,, bs.
Note 4 | believe there is value imamingthese matrices. The words “difference matrix” and “sum
matrix” tell how they act. Itis the action of matrices, whea foerm Ax andC x andSb, that makes linear
algebra such a dynamic and beautiful subject.

The linear algebra symbol for the inverse matrix4is! (not1/4). ThusS = A~! findsx from b.
This example shows how linear algebra goes in parallel vatbutus. Sums are the inverse of differences,
and integration is the inverse of differentiation:

dx

S =A4"1 Ax = —
YT

t
=b(t) issolvedby x(t) = Sb = /0 b. (7)

The integral starts at(0) = 0, exactly as the sum startedxgt = 0.

The second example This example begins with almost the same three vectors—amdycomponent is
changed:

1 0 -1
c1 = —1 Cyr = 1 C3 =
0 -1 1

The combinationx,c; + xc, + x3c3 IS again a matrix multiplicatiod x:

X1 1 0 -1 X1 X1 — X3 bl
Cx = C1 Cp C3 Xy | = —1 1 0 Xo | = | Xop— X1 | = b2 . (8)
X3 0 -1 1 X3 X3 — Xp b3

With the new vector in the third columig; is a “cyclic” difference matrix. Instead of; — 0 we have
x1 — x3. The differences oks “wrap around” to give the news. The inverse direction begins with
by, by, by and asks for, x,, x3.



We always start witl, 0, 0 as thebs. You will see the change: nonzexs can have zero differences.
As long as thecs are equal, all their differences will be zero:

X1 — X3 0 X1
Cx =0 X—x1 =10 issolvedby x=| x; |=x1| 1 |. 9)
X3 — X3 0 X1

The zero solutior = Oisincluded (when:; = 0). Butl, 1,1 and2, 2,2 andxn, , & are also solutions—
all these constant vectors have zero differences and gblve- 0. The columnsg:, ¢, c3 aredependent
and not independent.

In the row-column description ofl x, we have found a vector = (1, 1, 1) that is perpendicular to
every row ofA. The columns combine to givéx = 0 whenx is perpendicular to every row.

This misfortune produces a new difficulty, when we try to sadix = b:

X1 — X3 bl
Xo—X1 | = | by cannot be solved unles$; + b, + bz = 0.
X3 — Xo b3

The three left sides add to zero, becausés now cancelled by-x;. So thebs on the right side must add
to zero. There is no solution like equation (5) for evéxy b,, bs. There is no inverse matrix lik§ to
givex = Sh. The cyclic matrixC is not invertible

Summary Both examples began by putting vectors into the columns o&ttixa Combinations of the
columns (with multipliersx) becamedx andCx. Difference matricest andC (noncyclic and cyclic)
multiplied x—that was an important switch in thinking. The details ofshgolumn vectors madéex = b
solvable for allb, while Cx = b is not always solvable. The words that express the contetgtdenA
andC are a crucial part of the language of linear algebra:

The vectorsiy, a,, a; are independent.

The nullspace fodx = 0 contains onlyx = 0.

The equatioMx = b is solved byx = Sb.

The square matrix has the inverse matrig = 47!,

The vectorsy, c,, c3 are dependent.

The nullspace fo€C x = 0 contains every “constant vectaty, xq, xi.
The equatiorCx = b cannot be solved unle$s + b, + b3 = 0.

C has no inverse matrix.

A picture of the three vectorg,, a,, as on the left andq, c¢,, ¢3 on the right, explains the difference
in a useful way. On the left, the three directions em@ependent The three arrows don't lie in a plane.
The combinationsa; + x,a, + x3as produce every three-dimensional vechorThe good multipliers
X1, X2, X3 are given byx = Sbh.

On the right, the three arrows do lie in a plane. The vectors,, c; aredependentEach vector has
components adding tb— 1 = 0, so all combinations of these vectors will hase+ b, + bz = 0 (this is
the equation for the plane). The differenags— x; andx, — x; andxz — x, can never be, 1, 1 because
those differences add to zero.



0
as = 0 c3 =
1
2
0
a; = —1 a, = 1
0 1 -1

Note 5 Almost unconsciously, one way of teaching a new subjectustiiated by these exampleBhe
ideas and the words are used before they are fully defineelieve we learn our own language this way—
by hearing words, trying to use them, making mistakes, aedtenally getting it right. A proper definition
is certainly needed, it is not at all an afterthought. But beay is an afterword.

Note 6 Allow me to close these lecture ideas by returning to Notdlis a combination of the columns
of A. Extend that matrix-vector multiplication tmatrix-matrix If the columns ofB areb, b,, b5 then
the columns ofd B are Ab,, Ab,, Abs.

The crucial fact about matrix multiplication isthat (AB)C = A(BC). By the previous sentence
we may prove this fact by considering one column vector

C1

Left side (AB)C = [Abl Ab2 Ab3] (60 = C1 Abl ) Ab2 +c3 Ab3 (10)
C3

Right side A(Be) = A(ciby + caba + c3by). (11)

In this way,(AB)C = A(BC) brings out the even more fundamental fact that matrix miidagion is
linear: (10) = (11).

Expressed differently, the multiplicatiohB has been defined to produce the composition rdlé:
acting onc is equal toA4 acting onB acting onc.

Time after time, this associative law is the heart of shooofs. | will admit that these “proofs by
parenthesis” are almost the only ones | present in classe Bier examples ofAB)C = A(BC) at
three key points in the course. (I don't always use the onsneaordproof in the video lectures [2] on
ocw.mit.edu, but the reader will see through this loss of courage.)

o If AB=1andBC = I thenC = A.
Right inverse= Left inverse C =(AB)C =A(BC)= 4

e If yTA = 0theny is perpendicular to evergx in the column space.
Nullspace ofA" L column space of4 yT(Ax) = (yTA)x =0

e If an invertible B contains eigenvectors, b,, b; of A, thenB~'AB is diagonal.

MU'tlply AB by columns A[bl b, b3] = [Abl Ab, Ab3] = [Albl )tzbz )&3[93]
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Then separate thid B into B times the eigenvalue matrix:

A
AB = [)&1[91 Aabs )&3[93] = [bl b, b3] Ao (again by COlumnS!)
A3

AB = BA gives the diagonalizatioB~'!AB = A. Equivalently it produces the factorization
A = BAB™!. Parentheses are not necessary in any of these tripleifations:

Spectral theorem for a symmetric matrix A= QAQT
Elimination on a symmetric matrix A=LDL"
Singular Value Decomposition of any matrix A =UXVT

One final comment: Factorizations express the central ideéisear algebra in a very effective
way. The eigenvectors of a symmetric matrix can be choséwoormal:QTQ = I in the spectral
theorem4d = QAQT. For all matrices, eigenvectors dfA” and A" A are the columns of/ andV/
in the Singular Value Decomposition. And our favorite rged™) A = A(ATA) is the key step in
establishing that SVD, long after this early lecture...

These orthonormal vectots,, ..., u,, and vy, ..., v, are perfect bases for tHeour Fundamental
Subspacesthe column space and nullspacesdBnd A™. Those subspaces become the organizing
principle of the course [2]. The Fundamental Theorem cotsneir dimensions to the rank df.

The flow of ideas is from numbers to vectors to subspaces. lBaehcomes naturally, and everyone
can get it—by seeing examples.
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