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1. Introduction. The first sections of this paper represent an imaginary lecture, very
near the beginning of a linear algebra course. We chose two matrices A and C , on the
principle that examples are amazingly powerful. The reader is requested to be exceptionally
patient, suspending all prior experience—and suspending also any hunger for precision and
proof. Please allow a partial understanding to be established first.

I believe there is value in naming these matrices. The words “difference matrix” and
“sum matrix” tell how they act. It is the action of matrices, when we form Ax and Cx and
Sb, that makes linear algebra such a dynamic and beautiful subject.

2. A first example. In the future I will begin my linear algebra class with these three
vectors a1, a2, a3:

a1 D

2

4

1

�1

0

3

5 a2 D

2

4

0

1

�1

3

5 a3 D

2

4

0

0

1

3

5 :

The fundamental operation on vectors is to take linear combinations. Multiply these
vectors a1, a2, a3 by numbers x1, x2, x3 and add. This produces the linear combination
x1a1 C x2a2 C x3a3 D b:
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(I am omitting words that would be spoken while writing.) A key step is to rewrite that
vector equation as a matrix equation Ax D b:

Put a1, a2, a3 into the columns of a matrix and put x1, x2, x3 into a vector.
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Key point A times x is exactly x1a1 C x2a2 C x3a3, a combination of the columns. This
definition of Ax brings a crucial change in viewpoint. At first, the x’s were multiplying
the a’s. Now, the matrix A is multiplying the vector x. The matrix acts on x to produce a
vector b:
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When the x’s are known, the matrix A takes their differences. We could imagine an
unwritten x0 D 0, and put in x1 � x0 to complete the pattern. A is a difference matrix.

AMS Classification 15A09 1



Note 1 Multiplying a matrix times a vector is the crucial step. If students have seen Ax

before, it was row times column. In examples they are free to compute that way (as I do).
“Dot product with rows” gives the same answer as “combination of columns”. When the
vector x1 a1 C x2 a2 C x3 a3 is computed one component at a time, we are using the rows.

The example illustrates how the same Ax arrives both ways. Differences like x2 � x1

come from row times column. Combining the columns of A is probably new to the class:
good. The relation of the rows to the columns is truly at the heart of linear algebra.

Note 2 (also for teachers) Three basic questions in linear algebra show why the column
description of Ax is so essential:

� When does a linear system Ax D b have a solution?
Ax D b asks us to express b as a combination of the columns of A. So there is a
solution exactly when b is in the column space of A.

� When are vectors a1; : : : ; an linearly independent?
The equation Ax D 0 must have only the zero solution. The nullspace of A must
contain only the vector x D 0.

� How do you express b as a combination of basis vectors?
Put those basis vectors into the columns of A. Solve Ax D b.

Note 3 The reader may object that we have only answered questions by introducing new
words. My response is, those ideas of column space and nullspace and basis are crucial
definitions in this subject. The student moves up to a higher level—a subspace level—by
understanding these words. This subject is constantly putting vectors into the columns of a
matrix, then working with that matrix.

I don’t accept that inevitably “The fog rolls in” when linear independence is defined.
The concrete way to dependence vs. independence is through Ax D 0: many solutions or
only the solution x D 0. This comes immediately in returning to the example.

One more step gives a new viewpoint of Ax D b. Suppose the numbers x1; x2; x3

are not known but b1; b2; b3 are known. Then Ax D b becomes an equation for x, not
an equation for b. We start with the differences (the b’s) and ask which x’s have those
differences. Linear algebra is always interested first in b D 0:

Ax D 0 Ax D
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5 : Then
x1 D 0

x2 D 0

x3 D 0

(3)

For this matrix, the only solution to Ax D 0 is x D 0. That may seem automatic but it’s not.
A key word in linear algebra (we are foreshadowing its importance) describes this situation.
These column vectors a1, a2, a3 are independent. Their combination x1a1 C x2a2 C x3a3

is Ax D 0 only when all the x’s are zero.
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Move now to nonzero differences b1 D 1, b2 D 3, b3 D 5. Is there a choice of x1, x2,
x3 that produces those differences 1; 3; 5? Solving the three equations in forward order, the
x’s are 1; 4; 9:

Ax D b
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This case x D 1; 4; 9 has special interest. When the b’s are the odd numbers in order, the
x’s are the perfect squares in order. But linear algebra is not number theory—forget that
special case ! For any b1, b2, b3 there is a neat formula for x1, x2, x3:
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This general solution includes the examples with b D 0; 0; 0 (when x D 0; 0; 0) and
b D 1; 3; 5 (when x D 1; 4; 9). One more insight will complete the example.

We started with a linear combination of a1, a2, a3 to get b. Now b is given and equa-
tion (5) goes back to find x. Write that solution with three new vectors whose combination
gives x:
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This is beautiful, to see a sum matrix S in the formula for x. The equation Ax D b is
solved by x D Sb. The matrix S is the “inverse” of the matrix A. The difference matrix
is inverted by the sum matrix. Where A took differences of the x’s, the new matrix S takes
sums of the b’s.

The linear algebra symbol for the inverse matrix is A�1 (not 1=A). Thus S D A�1 finds
x from b. This example shows how linear algebra goes in parallel with calculus. Sums are
the inverse of differences, and integration is the inverse of differentiation:

S D A�1 Ax D
dx

dt
D b.t/ is solved by x.t/ D Sb D

Z t

0

b: (7)

Note 4 The student who notices that the integral starts at x.0/ D 0, and connects this to
the earlier suggestion that x0 D 0, is all too likely to become a mathematician.

3. The second example. This example begins with almost the same three vectors—
only one component is changed:
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The combination x1c1 C x2c2 C x3c3 is again a matrix multiplication Cx:
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With the new vector in the third column, C is a “cyclic” difference matrix. Instead of x1 �0

we have x1 � x3. The differences of x’s “wrap around” to give the new b’s. The inverse
direction begins with the b’s and asks for the x’s.

We always start with 0; 0; 0 as the b’s. You will see the change: nonzero x’s can have
zero differences. As long as the x’s are equal, all their differences will be zero:

Cx D 0
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The zero solution x D 0 is included (when x1 D 0). But 1; 1; 1 and 2; 2; 2 and �; �; � are
also solutions—all these constant vectors have zero differences and solve Cx D 0. The
columns c1; c2; c3 are dependent and not independent.

In the row-column description of Ax, we have found a vector x D .1; 1; 1/ that is
perpendicular to every row of A. The columns combine to give Ax D 0 when x is perpen-
dicular to every row.

This misfortune produces a new difficulty, when we try to solve Cx D b:
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5 cannot be solved unless b1 C b2 C b3 D 0:

The three left sides add to zero, because x3 is now cancelled by �x3. So the b’s on the right
side must add to zero. There is no solution like equation (5) for every b1, b2, b3. There is
no inverse matrix like S to give x D Sb. The cyclic matrix C is not invertible.

4. Summary. Both examples began by putting vectors into the columns of a matrix.
Combinations of the columns (with multipliers x) became Ax and Cx. Difference matrices
A and C (non-cyclic and cyclic) multiplied x—that was an important switch in thinking.
The details of those column vectors made Ax D b solvable for all b, while Cx D b is not
always solvable. The words that express the contrast between A and C are a crucial part of
the language of linear algebra:

The vectors a1, a2, a3 are independent.
The nullspace for Ax D 0 contains only x D 0.
The equation Ax D b is solved by x D Sb.
The square matrix A has the inverse matrix S D A�1.

The vectors c1, c2, c3 are dependent.
The nullspace for Cx D 0 contains every “constant vector” x1, x1, x1.
The equation Cx D b cannot be solved unless b1 C b2 C b3 D 0.
C has no inverse matrix.
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A picture of the three vectors, the a’s on the left and the c’s on the right, explains the
difference in a useful way. On the left, the three directions are independent. The arrows to
a1; a2; a3 don’t lie in a plane. The plane through the points at the the ends of the arrows
will not go through .0; 0; 0/. The combinations x1a1 C x2a2 C x3a3 produce every three-
dimensional vector b. The good multipliers x1; x2; x3 are given by x D Sb.
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On the right, the three arrows do lie in a plane. The vectors c1; c2; c3 are dependent.
Each vector has components adding to 1 � 1 D 0, so all combinations of these vectors will
have b1 C b2 C b3 D 0 (this is the equation for the plane). The differences x1 � x3; x2 �

x1; x3 � x2 can never be 1; 1; 1 because those differences add to zero.

Note 5 Almost unconsciously, these two examples illustrate one way of teaching a new
subject. The ideas and the words are used before they are fully defined. I believe we
learn our own language this way—by hearing words, trying to use them, making mistakes,
and eventually getting it right. A proper definition is certainly needed, it is not at all an
afterthought. But maybe it is an afterword.

Note 6 May I close these lecture ideas by returning to Note 1: Ax is a combination of the
columns of A. Extend that matrix-vector multiplication to matrix-matrix: If the columns
of B are b1; b2; b3 then the columns of AB are Ab1; Ab2; Ab3.

The crucial fact about matrix multiplication is .AB/C D A.BC /. By the previous
sentence we may prove this fact by considering one column vector c.

Left side .AB/c D ŒAb1 Ab2 Ab3�

2

4

c1

c2

c3

3

5 D c1 Ab1 C c2 Ab2 C c3 Ab3 (10)

Right side A.Bc/ D A.c1b1 C c2b2 C c3b3/: (11)

In this way, .AB/C D A.BC / brings out the even more fundamental fact that matrix
multiplication is linear: .10/ D .11/.

Expressed differently, the multiplication AB has been defined to produce the composi-
tion rule: AB acting on c equals A acting on Bc. Columns are natural to work with.

Time after time, that highlighted law .AB/C D A.BC / is the heart of short proofs.
I will admit that these “proofs by parenthesis” are almost the only ones I present in class.
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Here are examples at three key points in the course. (I don’t always use the ominous word
proof in the video lectures on ocw.mit.edu, but the reader will see through this loss of
courage.)

� If AB D I and BC D I then C D A.
Right inverse D Left inverse C D .AB/C D A.BC / D A

� If yTA D 0 then y is perpendicular to every Ax.

Nullspace of AT ? column space of A yT.Ax/ D .yTA/x D 0

� If an invertible B contains eigenvectors b1; b2; b3 of A, then B�1AB is diagonal.

Multiply AB by columns AŒb1 b2 b3� D ŒAb1 Ab2 Ab3� D Œ�1b1 �2b2 �3b3�

Then separate this AB into B times the eigenvalue matrix ƒ:

AB D Œ�1b1 �2b2 �3b3� D Œb1 b2 b3�

2

4

�1

�2

�3

3

5 (again by columns!)

AB D Bƒ gives the diagonalization B�1AB D ƒ. Equivalently it produces the
factorization A D BƒB�1. Parentheses are not necessary in any of these triple
factorizations:

Spectral theorem for a symmetric matrix A D QƒQT

Elimination on a symmetric matrix A D LDLT

Singular Value Decomposition of any matrix A D U †V T

The matrices Q; U; V have orthonormal columns—eigenvectors in Q, singular vec-
tors in U and V . Those columns are the perfect bases for the four fundamental
subspaces. I think of the SVD as the ultimate goal, long after this early lecture...
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