Math 18.06 Quiz 3 Solutions

1 (30 pts.) (a)

\[A = SAS^{-1} = \begin{bmatrix} 1 & 6 & 8 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & -6 & -8 \\ & & & \\ & & & \end{bmatrix} \]

(b)

\[A^\infty = \begin{bmatrix} 1 & 6 & 8 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & & -6 & -8 \\ & & & \\ & & & \end{bmatrix} = \begin{bmatrix} 0 & 6 & 8 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

(c) The eigenvalues of \(B \) must both be 1. Suppose \(B \) has the Jordan form \(J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \), with \(B = MJM^{-1} \). Then \(B^n = MJ^nM^{-1} \) and \(J^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \), which cannot converge. So \(B \) can NOT have Jordan Form \(J \). The only alternative is that \(B \) has Jordan form \(I \), in which case \(B = MIM^{-1} = I \)
2 (40 pts.) (a) \(S^{-1} = S^T \), so \(A = S \Lambda S^T \) is symmetric. Singular values are always nonnegative, so from \(\Lambda = \Sigma \) the eigenvalues of \(A \) are nonnegative, so \(A \) is symmetric positive semidefinite. It can be singular (the all zeros matrix is an example).

(b) The eigenvalues of a projection matrix are either 0 or 1, and their sum is 2, so they must be 1, 1, 0. For example

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1/2 & 1/2 \\
0 & 1/2 & 1/2
\end{bmatrix}
\]

(c) \(A^T A = \begin{bmatrix} 25 & 0 \\ 0 & 49 \end{bmatrix} \) so the singular values are 7 and 5. So

\[
V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

and

\[
A = \begin{bmatrix} 0 & 3/5 & -4/5 \\ 0 & 4/5 & 3/5 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\]

(d) 1. The eigenvalues of \(A \) are 1,1,2 - the same as the eigenvalues of \(B \).
2. \(A \) might or might not be diagonalizable
3. \(A \) might or might not be symmetric
4. \(A \) definitely (!) has positive eigenvalues. However it might not be symmetric, so \(A \) might or might not be positive definite.
3 (30 pts.) (a) The eigenvalues are $0, \sqrt{2}i, -\sqrt{2}i$. They are all pure imaginary (including zero!) because A is skew symmetric.

(b) The general solution is $\vec{u}(T) = c_1 x_1 + c_2 e^{\sqrt{2}iT} x_2 + e^{-\sqrt{2}iT} x_3$

(c) $e^{i\theta} = \cos \theta + i \sin \theta$. This function has a period of 2π, so when $\sqrt{2}T = 2n\pi$, we have $\vec{u}(T) = \vec{u}(0)$. In particular, T can be $\sqrt{2}\pi$.