Your name is: __________________________

Please circle your recitation:

Recitations

<table>
<thead>
<tr>
<th>#</th>
<th>Time</th>
<th>Room</th>
<th>Instructor</th>
<th>Office</th>
<th>Phone</th>
<th>Email @math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect. 1</td>
<td>MWF 12</td>
<td>4-270</td>
<td>M. Huhtanen</td>
<td>2-335</td>
<td>3-7905</td>
<td>huhtanen</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>MWF 1</td>
<td>4-370</td>
<td>A. Edelman</td>
<td>2-380</td>
<td>3-7770</td>
<td>edelman</td>
</tr>
<tr>
<td>Rec. 1</td>
<td>M 2</td>
<td>2-131</td>
<td>D. Sheppard</td>
<td>2-342</td>
<td>3-7578</td>
<td>sheppard</td>
</tr>
<tr>
<td>2</td>
<td>M 2</td>
<td>2-132</td>
<td>M. Huhtanen</td>
<td>2-335</td>
<td>3-7905</td>
<td>huhtanen</td>
</tr>
<tr>
<td>3</td>
<td>M 3</td>
<td>2-131</td>
<td>D. Sheppard</td>
<td>2-342</td>
<td>3-7578</td>
<td>sheppard</td>
</tr>
<tr>
<td>4</td>
<td>T 10</td>
<td>2-132</td>
<td>A. Lachowska</td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>5</td>
<td>T 10</td>
<td>2-131</td>
<td>S. Kleiman</td>
<td>2-278</td>
<td>3-4996</td>
<td>kleiman</td>
</tr>
<tr>
<td>6</td>
<td>T 11</td>
<td>2-131</td>
<td>M. Honsen</td>
<td>2-490</td>
<td>3-4094</td>
<td>honsen</td>
</tr>
<tr>
<td>7</td>
<td>T 11</td>
<td>2-132</td>
<td>A. Lachowska</td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>8</td>
<td>T 12</td>
<td>2-131</td>
<td>M. Honsen</td>
<td>2-490</td>
<td>3-4094</td>
<td>honsen</td>
</tr>
<tr>
<td>9</td>
<td>T 1</td>
<td>2-132</td>
<td>A. Lachowska</td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>10</td>
<td>T 1</td>
<td>2-131</td>
<td>S. Kleiman</td>
<td>2-278</td>
<td>3-4996</td>
<td>kleiman</td>
</tr>
<tr>
<td>11</td>
<td>T 2</td>
<td>2-132</td>
<td>F. Latour</td>
<td>2-090</td>
<td>3-6293</td>
<td>flatour</td>
</tr>
</tbody>
</table>
1 (32 pts.) Suppose A is the tridiagonal matrix

$$
A = \begin{bmatrix}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 3 & -1 \\
0 & 0 & -1 & 0
\end{bmatrix}
$$

(a) Carry out the row elimination to find the upper triangular factor U. (10)

(b) What matrix L yields $A = LU$? (6)

(c) Solve $Ax = b$ with

$$
b = \begin{bmatrix}
-1 \\
2 \\
-2 \\
0
\end{bmatrix}.
$$

All components of the solution x happen to be 0’s or 1’s. What linear combination of the columns of A produces b? (10)

(d) If you change the entry $A_{4,4} = 0$ in the right lower-corner of A to $A_{4,4} = ____$ the matrix becomes singular. (Hint: look at pivots) (6)
2 (36 pts.)

(a) Suppose $A^n = 0$. Show that $(I - A)^{-1} = I + A + A^2 + \cdots + A^{n-1}$. (10)

(b) Assume A and B are commuting matrices (that is, $AB = BA$). If they both are also nonsingular, show that A^{-1} and B^{-1} commute. (10)

(c) Which are true and which false. (Give a good reason!!!)

Let A be an m-by-n matrix. Then $Ax = 0$ has always a non-zero solution if

(i) $\text{rank}(A) < m$ (5)
(ii) $\text{rank}(A) < n$ (5)
(iii) $m = n$ and $A^2 = 0$ (6)
3 (32 pts.) Suppose after elimination on a matrix A we reach its row reduced echelon form

$$R = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) Find the null space matrix of A. (10)

(b) What is the null space of A^T? (6)

(c) What is the rank of 2-by-9 block matrix $[A \ A \ A]$? (6)

(d) Find a complete solution to $Rx = d$ with $d = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. (10)