Your name is: ________________________________

Please circle your recitation:

<table>
<thead>
<tr>
<th>Recitations</th>
<th>#</th>
<th>Time</th>
<th>Room</th>
<th>Instructor</th>
<th>Office</th>
<th>Phone</th>
<th>Email @math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lect. 1</td>
<td>MWF</td>
<td>1800</td>
<td></td>
<td></td>
<td>2-335</td>
<td>3-7905</td>
<td>huhtanen</td>
</tr>
<tr>
<td>Lect. 2</td>
<td>MWF</td>
<td>1830</td>
<td></td>
<td></td>
<td>2-345</td>
<td>3-7770</td>
<td>edelman</td>
</tr>
<tr>
<td>Rec. 1</td>
<td>M 2</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-342</td>
<td>3-7578</td>
<td>sheppard</td>
</tr>
<tr>
<td>Rec. 2</td>
<td>M 2</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-335</td>
<td>3-7905</td>
<td>huhtanen</td>
</tr>
<tr>
<td>Rec. 3</td>
<td>M 3</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-342</td>
<td>3-7578</td>
<td>sheppard</td>
</tr>
<tr>
<td>Rec. 4</td>
<td>T 10</td>
<td>2-132</td>
<td></td>
<td></td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>Rec. 5</td>
<td>T 10</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-278</td>
<td>3-4996</td>
<td>kleiman</td>
</tr>
<tr>
<td>Rec. 6</td>
<td>T 11</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-490</td>
<td>3-4094</td>
<td>honsen</td>
</tr>
<tr>
<td>Rec. 7</td>
<td>T 11</td>
<td>2-132</td>
<td></td>
<td></td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>Rec. 8</td>
<td>T 12</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-490</td>
<td>3-4094</td>
<td>honsen</td>
</tr>
<tr>
<td>Rec. 9</td>
<td>T 1</td>
<td>2-132</td>
<td></td>
<td></td>
<td>2-180</td>
<td>3-4350</td>
<td>anechka</td>
</tr>
<tr>
<td>Rec. 10</td>
<td>T 1</td>
<td>2-131</td>
<td></td>
<td></td>
<td>2-278</td>
<td>3-4996</td>
<td>kleiman</td>
</tr>
<tr>
<td>Rec. 11</td>
<td>T 2</td>
<td>2-132</td>
<td></td>
<td></td>
<td>2-090</td>
<td>3-6293</td>
<td>flatour</td>
</tr>
</tbody>
</table>
1 \textbf{(36 pts.)} Let A be the square matrix

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} q_1^T + \begin{bmatrix} -1 \\ -1 \end{bmatrix} q_2^T,$$

where q_1 and q_2 are orthonormal vectors in \mathbb{R}^3. (12p)

(a) Find x such that

$$Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

(b) Choose a such that the column space of A has dimension 1. (8p)

(c) If

$$q_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } q_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

and $a = 0$, solve

$$Ay = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

in the least squares sense. (16p)
2 (28 pts.) Let

\[A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}. \]

(a) By Gram-Schmidt, factor \(A \) into \(QR \) where \(Q \) is orthogonal and \(R \) is upper triangular. (16p such that 10p from \(Q \) and 6p from \(R \))

(b) Find the inverse of \(R \) and then give the inverse of \(A \) by using \(A = QR \). (12p such that 4p from \(R^{-1} \) and 4p from \(Q^{-1} \) and 4p from \(A^{-1} \))
(36 pts.) (a) Let u, v and w be linearly independent. How is the matrix A with columns u, v, w related to the matrix B with columns $u + v$, $u - v$, $u - 2v + w$? Show that those three columns are linearly independent.

(12p)

(b) Using Cramer’s rule, find b_3 such that $x_3 = 0$ for the solution of

$$
\begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 1 \\
1 & -2 & -3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}
=
\begin{bmatrix}
3 \\
1 \\
b_3
\end{bmatrix}.
$$

(12p)

(c) Using rules for the determinant (so do not compute it with any of the 3 formulas), show the steps and rules that lead to

$$
\begin{vmatrix}
1 & a & b + c \\
1 & b & c + a \\
1 & c & a + b
\end{vmatrix}
= 0
$$

(12p)