Your name is: ____________________________

Please circle your recitation:

1) M2 2-131 P.-O. Persson 2-088 2-1194 persson
2) M2 2-132 I. Pavlovsky 2-487 3-4083 igorvp
3) M3 2-131 I. Pavlovsky 2-487 3-4083 igorvp
4) T10 2-132 W. Luo 2-492 3-4093 luowei
5) T10 2-131 C. Boulet 2-333 3-7826 cilanne
6) T11 2-131 C. Boulet 2-333 3-7826 cilanne
7) T11 2-132 X. Wang 2-244 8-8164 xwang
8) T12 2-132 P. Clifford 2-489 3-4086 peter
9) T1 2-132 X. Wang 2-244 8-8164 xwang
10) T1 2-131 P. Clifford 2-489 3-4086 peter
11) T2 2-132 X. Wang 2-244 8-8164 xwang

The ten questions are worth 10 points each.

Thank you for taking 18.06!
The 4 by 6 matrix A has all 2’s below the diagonal and elsewhere all 1’s:

$$A = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 1 & 1 & 1
\end{bmatrix}$$

(a) By elimination factor A into L (4 by 4) times U (4 by 6).

(b) Find the rank of A and a basis for its nullspace (the special solutions would be good).
Suppose you know that the 3 by 4 matrix A has the vector $s = (2, 3, 1, 0)$ as a basis for its nullspace.

(a) What is the rank of A and the complete solution to $Ax = 0$?

(b) What is the exact row reduced echelon form R of A?
The following matrix is a projection matrix:

\[P = \frac{1}{21} \begin{bmatrix} 1 & 2 & -4 \\ 2 & 4 & -8 \\ -4 & -8 & 16 \end{bmatrix}. \]

(a) What subspace does \(P \) project onto?
(b) What is the distance from that subspace to \(b = (1, 1, 1) \)?
(c) What are the three eigenvalues of \(P \)? Is \(P \) diagonalizable?
(a) Suppose the product of A and B is the zero matrix: $AB = 0$. Then the (1) space of A contains the (2) space of B. Also the (3) space of B contains the (4) space of A. Those blank words are

(1) ____________ (2) ____________ (3) ____________ (4) ____________

(b) Suppose that matrix A is 5 by 7 with rank r, and B is 7 by 9 of rank s. What are the dimensions of spaces (1) and (2)? From the fact that space (1) contains space (2), what do you learn about $r + s$?
Suppose the 4 by 2 matrix Q has orthonormal columns.

(a) Find the least squares solution \hat{x} to $Qx = b$.

(b) Explain why QQ^T is not positive definite.

(c) What are the (nonzero) singular values of Q, and why?
Let S be the subspace of \mathbb{R}^3 spanned by \[
\begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
5 \\
4 \\
-2
\end{bmatrix}.
\]

(a) Find an orthonormal basis q_1, q_2 for S by Gram-Schmidt.

(b) Write down the 3 by 3 matrix P which projects vectors perpendicularly onto S.

(c) Show how the properties of P (what are they?) lead to the conclusion that Pb is orthogonal to $b - Pb$.

(a) If \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) form a basis for \(\mathbb{R}^3 \) then the matrix with those three columns is _____.

(b) If \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \) span \(\mathbb{R}^3 \), give all possible ranks for the matrix with those four columns. __________.

(c) If \(\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3 \) form an orthonormal basis for \(\mathbb{R}^3 \), and \(T \) is the transformation that projects every vector \(\mathbf{v} \) onto the plane of \(\mathbf{q}_1 \) and \(\mathbf{q}_2 \), what is the matrix for \(T \) in this basis? Explain.
Suppose the n by n matrix A_n has 3’s along its main diagonal and 2’s along the diagonal below and the $(1, n)$ position:

\[
A_4 = \begin{bmatrix}
3 & 0 & 0 & 2 \\
2 & 3 & 0 & 0 \\
0 & 2 & 3 & 0 \\
0 & 0 & 2 & 3
\end{bmatrix}.
\]

Find by cofactors of row 1 or otherwise the determinant of A_4 and then the determinant of A_n for $n > 4$.

There are six 3 by 3 permutation matrices P.

(a) What numbers can be the determinant of P? What numbers can be pivots?

(b) What numbers can be the trace of P? What four numbers can be eigenvalues of P?
Suppose A is a 4 by 4 upper triangular matrix with 1, 2, 3, 4 on its main diagonal. (You could put all 1’s above the diagonal.)

(a) For $A - 3I$, which columns have pivots? Which components of the eigenvector x_3 (the special solution in the nullspace) are definitely zero?

(b) Using part (a), show that the eigenvector matrix S is also upper triangular.