18.06. Fall 2003. Quiz 2 Solutions.

1. (20 points) Suppose that

\[A = LU = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 6 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \]

(a) (8 points) Find the dimensions of the four fundamental subspaces of \(A \).

Solution: \(A \) is \(3 \times 4 \), so \(m = 3 \) and \(n = 4 \). As \(L \) is invertible, \(\text{rank}(A) = \text{rank}(U) = 2 \) (2 pivots). Thus, \(\text{dim}(C(A)) = 2 \), \(\text{dim}(R(A)) = 2 \), \(\text{dim}(N(A)) = 4 - \text{rank}(A) = 2 \) and \(\text{dim}(N(A^T)) = 3 - \text{rank}(A) = 1 \).

(b) (6 points) Find a basis for the row space \(R(A) \).

Solution: \(R(A) = R(U) \) and thus the first two rows of \(U \) form a basis of \(R(A) \): \((1, 0, 2, 4) \) and \((0, 1, -1, 1) \). Any other basis (2 vectors spanning the same subspace) is perfect too.

(c) (6 points) Find a basis for the column space \(C(A) \).

Solution: Since \(C(U) \) has \((1, 0, 0)\) and \((0, 1, 0) \) as basis, the first two columns of \(L \) will be a basis of \(C(A) \): \((1, 1, 6)\) and \((0, 1, 3)\). Any other basis (2 vectors spanning the same subspace) is perfect too.

2. (15 points) Let \(a_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}, a_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \) and \(a_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \). Let \(V \) be the subspace of \(R^4 \) spanned by \(a_1, a_2, \) and \(a_3 \). Using Gram-Schmidt, find an orthonormal basis \(q_1, q_2, \) and \(q_3 \) of \(V \). Show your work.

Solution: First we get 3 orthogonal vectors \(u_1, u_2, \) and \(u_3 \), and then we normalize them to get \(q_1, q_2, \) and \(q_3 \). We have

\[u_1 = a_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix}, \]

\[u_2 = a_2 - \frac{a_2 \cdot u_1}{u_1 \cdot u_1} u_1, \]

\[u_3 = a_3 - \frac{a_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{a_3 \cdot u_2}{u_2 \cdot u_2} u_2, \]

and

\[q_1 = \frac{u_1}{\|u_1\|}, q_2 = \frac{u_2}{\|u_2\|}, q_3 = \frac{u_3}{\|u_3\|}. \]
\[u_2 = a_2 - \frac{u_2^T a_2}{u_2^T u_1} u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \]

\[u_3 = a_3 - \frac{u_2^T a_3}{u_1^T u_1} u_1 - \frac{u_2^T a_3}{u_2^T u_2} u_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 3 \\ 3 \end{bmatrix}. \]

After normalization we get:

\[q_1 = \frac{u_1}{\|u_1\|} = \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{bmatrix}, \]

\[q_2 = \frac{u_2}{\|u_2\|} = \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}, \]

\[q_3 = \frac{u_3}{\|u_3\|} = \begin{bmatrix} -1/\sqrt{20} \\ 3/\sqrt{20} \\ 1/\sqrt{20} \\ 3/\sqrt{20} \end{bmatrix}. \]

3. (35 points) Let \(a \) be a (column) vector in \(\mathbb{R}^3 \) and \(\ell \) the line consisting of all multiples of \(a \). Let \(P \) be the \(3 \times 3 \) projection matrix for projecting \(\mathbb{R}^3 \) onto the line \(\ell \). In these subquestions, you do not need to justify your answer.

(a) (3 points) Write an expression for \(P \) in terms of \(a \).

Solution: \(P = \frac{1}{a^T a} a a^T \) or \(P = a(a^T a)^{-1} a^T \)

(b) (4 points) Write an expression for the distance from a point \(b \) to the line \(\ell \).

Solution: \(\|b - P b\| \) or \(\|b - \frac{a^T b}{a^T a} a\| \)

(c) (3 points) Give a basis for the column space \(C(P) \). What is the dimension of \(C(P) \)?

Solution: The vector \(a \) forms a basis, and \(C(P) \) has dimension 1.
(d) (4 points) Describe geometrically what the nullspace $N(P)$ of P is. What is its dimension?

Solution: $N(P)$ is the orthogonal complement to the line ℓ; it is the plane orthogonal to ℓ. Its dimension is 2.

(e) (3 points) What is the rank of P?

Solution: 1 (since $C(P)$ has dimension 1).

(f) (3 points) Is P invertible?

Solution: No (since rank is not 3).

(g) (3 points) What is the projection matrix Q for projecting onto the orthogonal complement to ℓ? Write an expression in terms of P.

Solution: $Q = I - P$.

(h) (4 points) What is rank of PQ?

Solution: 0 (since $PQ = P(I - P) = P - P^2 = P - P = 0$).

(i) (4 points) What are the eigenvalues of P? Give an eigenvector corresponding to the largest eigenvalue.

Solution: 0, 0 and 1. a is an eigenvector corresponding to $\lambda = 1$.

(j) (4 points) What is $\det(P + 2I)$?

Solution: 12 (since the eigenvalues of P differ from those of P by 2 units, thus they are 2, 2 and 3, and the determinant is the product of the eigenvalues).

4. (15 points) Compute the determinant of

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 \\ 0 & 3 & 3 & 3 \\ 0 & 0 & 4 & 4 \end{bmatrix}.$$

Show your work.

Solution: Let’s divide row i by i. Thus $\det(A)$ is 24 times the determinant of

$$B = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$
Let’s do elimination. First subtract row 1 from row 2 to get:

\[
\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

Now the only permutation in the big formula that will be non-zero has column numbers \((1,3,2,4)\) (which is odd), so \(\det(B) = -1\) and \(\det(A) = -24\).

5. (10 points) Let

\[
A = \begin{bmatrix}
0 & -1 & -1 \\
a & b & c \\
-1 & -1 & 2 \\
\end{bmatrix},
\]

where \(a, b\) and \(c\) are not given. We are told that (i) 2 is an eigenvalue of \(A\), (ii) \(\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\) is an eigenvector and (iii) \(\det(A) = -6\).

(a) (6 points) What are all eigenvalues of \(A\)?

Solution: Since \(v = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}\) is an eigenvector of \(A\), its corresponding eigenvalue \(\lambda\) satisfies \(Av = \begin{bmatrix} -2 \\ 2a + b + c \\ -1 \end{bmatrix} = \lambda v\), and thus \(\lambda = -1\).

The determinant is the product of the eigenvalues, and therefore the third eigenvalue is 3. The three eigenvalues are thus \(-1, 2\) and 3.

(b) (4 points) What are the values of \(a, b\) and \(c\)?

Solution: The trace of \(A\) is \(2 + b\) and is equal to the sum of the eigenvalues (\(= 4\)), so \(b = 2\). From \(Av = -v\), we get \(2a + b + c = -1\), or \(2a + c = -3\). \(\det(A) = 2a + b - (-a + 2) = 3a + c - 2 = -6\) or \(3a + c = -4\). This implies that \(a = c = -1\).