Problem 1 Monday 11/6

Do Problem #12 from section 8.3 in your book.

Solution 1

The columns of A must sum to 1, so $A = \begin{bmatrix} .7 & .1 & .2 \\ .1 & .6 & .3 \\ .2 & .3 & .5 \end{bmatrix}$.

Our theory tells us the steady state is the eigenvector with $\lambda = 1$, and sure enough there is one: $x_1 = (1, 1, 1)$ (or any multiple of x_1) works.

Why is $x_1 = (1, 1, \ldots, 1)$ a steady state? The entries of Ax_1 are the sums of each row. But A is symmetric, so these are the same as the sums of each column, which are 1. So the entries of Ax_1 are 1, just like the entries of x_1.

Problem 2 Monday 11/6

Of 300 million Americans, 60% own their own home and the other 40% rent. Let’s represent these proportions as a vector: $x = \begin{bmatrix} \text{owners} \\ \text{renters} \end{bmatrix} = \begin{bmatrix} .60 \\ .40 \end{bmatrix}$.

Every year, some proportion of renters will buy a house, and some proportion of homeowners will move to a rental. If these proportions remain constant, we can model this with the “Markov process” $x_{k+1} = Ax_k$ for some 2-by-2 Markov matrix A.

Suppose the proportion of homeowners and renters is modeled by this Markov process; it maintains the steady state $x = \begin{bmatrix} .60 \\ .40 \end{bmatrix}$ above; and 90 percent of homeowners in any given year k still own a home in year $k + 1$.

Determine A, and estimate how many American renters will buy a home this year.

Solution 2

We know the first column of A (how many homeowners are owners/renters in the following year): $A = \begin{bmatrix} .90 & ? \\ .10 & ? \end{bmatrix}$

We can calculate the second column of A from the steady state $Ax = x$: $\begin{bmatrix} .90 & a \\ .10 & 1 - a \end{bmatrix} \begin{bmatrix} .60 \\ .40 \end{bmatrix} = \begin{bmatrix} .60 \\ .40 \end{bmatrix}$
gives $A = \begin{bmatrix} .90 & .15 \\ .10 & .85 \end{bmatrix}$.

So 15% of American renters, or 6% of Americans, will buy a home, for a total of 18 million new homeowners.

Problem 3 Wednesday 11/8

Find the first three nonzero terms in the Fourier series for the period-2π function

$$f(t) = \begin{cases} 1, & 0 < t < \pi \\ 0, & \pi < t < 2\pi \end{cases}$$

Then find the lengths of the original function $\|f(t)\|$ and your three-term approximation $\|g(t)\|$, and the distance $\|f(t) - g(t)\|$ between them.
Solution 3

When we expand \(f(t) \) as a Fourier series, it looks like \(f(t) = a_0 \cdot 1 + a_1 \cos(t) + b_1 \sin(t) + a_2 \cos(2t) + b_2 \sin(2t) + \ldots \). All we have to do is figure out the coefficients \(a_i, b_i \). This is easy, because the basis functions \(1, \cos(t), \ldots \) are orthogonal — if we take an inner product, all the other terms go away!

So, to find \(a_0 \), we take the inner product with the basis function \(1 \) —

\[
(f, 1) = \int_0^{2\pi} a_0 \cdot 1 + a_1 \cos(t) + b_1 \sin(t) + \ldots \ dt = \int_0^{2\pi} f(t) \ dt
\]

\[
\int_0^{2\pi} a_0 dt = \int_0^{\pi} dt
\]

\[
2\pi a_0 = \pi
\]

so \(a_0 = 1/2 \).

Similarly for \(a_1 \):

\[
(f, \cos(t)) = \int_0^{2\pi} (a_0 \cdot 1 + a_1 \cos(t) + b_1 \sin(t) + \ldots) \cos(t) \ dt = \int_0^{2\pi} f(t) \cos(t) \ dt
\]

\[
\int_0^{2\pi} a_1 \cos(t) \ dt = \int_0^{\pi} \cos(t) dt
\]

\[
\pi a_1 = 0
\]

so \(a_1 = 0 \); in fact, all the cosine coefficients \(a_k \) are zero.

Similarly for the sine coefficients \(b_k \):

\[
(f, \sin(kt)) = \int_0^{2\pi} (a_0 \cdot 1 + a_1 \cos(t) + b_1 \sin(t) + \ldots) \sin(kt) \ dt = \int_0^{2\pi} f(t) \sin(kt) \ dt
\]

\[
\int_0^{2\pi} a_1 \sin(kt) \ dt = \int_0^{\pi} \sin(kt) dt
\]

\[
\pi b_k = \left[\frac{-\cos(kt)}{k} \right]_{t=0}^{\pi}
\]

This gives \(b_k = 0 \) if \(k \) is even, and \(b_k = \frac{2}{k\pi} \) if \(k \) is odd.

(You could also use the book’s formulas to find the coefficients. But this is where they come from.)

So the first three terms of the Fourier series for \(f(t) \) are

\[
f(t) \approx g(t) = \frac{1}{2} + \frac{2}{\pi} \sin(t) + \frac{2}{3\pi} \sin(3t).
\]

Now we find the lengths.

\[
\|f(t)\|^2 = (f, f) = \int_0^{2\pi} f(t)^2 dt = f_0^\pi dt = \pi, \text{ so } \|f\| = \sqrt{\pi}.
\]

\[
\|g(t)\|^2 = (g, g) = (1/2)^2 + (2/\pi)^2 + (2/3\pi)^2 \text{ (the basis vectors are orthogonal!)}, \text{ so } \|g\| = \sqrt{(1/4) + (40/9\pi^2)} = \sqrt{160 + 9\pi^2}/6\pi.
\]

\[
\|f(t) - g(t)\|^2 = (f - g, f - g) = \int_0^{2\pi} (f(t) - 1/2 - 2/\pi \sin(t) - 2/3\pi \sin(3t))^2 dt = \ldots
\]

You could evaluate that integral, but there’s an easier way: since \(g \) is the orthogonal projection of \(f \) into a subspace, the error \(f - g \) (= \(b_5 \sin(5t) + b_7 \sin(7t) + \ldots \)) is orthogonal to \(g \)!

So \(\|f\|^2 = \|g\|^2 + \|f - g\|^2 \) and \(\|f - g\|^2 = \sqrt{\pi} - \sqrt{160 + 9\pi^2}/6\pi. \)

(It’s not obvious this is positive (as lengths should be), but it is.)

Problem 4 Wednesday 11/8

Do Problem #1 from section 10.2 in your book.
Solution 4

You can still find lengths by the Pythagorean theorem (since |a + bi| = √(a² + b²):
\[\|u\| = \sqrt{(1 + 1) + (1 + 1) + (1 + 4)} = \sqrt{9} = 3,\]
and \[\|v\| = \sqrt{(0 + 1) + (0 + 1) + (0 + 1)} = \sqrt{3}.\]
Or take the dot product (don’t forget to conjugate!):
\[\|u\| = \sqrt{u^H u} = \sqrt{(1 - i)(1 = i) + (1 + i)(1 - i) + (1 - 2i)(1 + 2i)} = \sqrt{2 + 2 + 5} = 3,\]
and \[\|v\| = \sqrt{v^H v} = \sqrt{(-i)(+i) + (-i)(+i) + (-i)(+i)} = \sqrt{1 + 1 + 1} = \sqrt{3}.\]
For complex inner products, order matters:
\[u^H v = (1 - i)i + (1 + i)i + (1 - 2i)i = 2 + 3i,\]
but \[v^H u = -i(1 + i) - i(1 - i) - i(1 + 2i) = 2 - 3i!\]
(The difference is that \((u^H v)^H = vu^H\) conjugates \(u\), but \(v^H u\) conjugates \(v\). So the two products are conjugates of each other.)

Problem 5 Wednesday 11/8

Do Problem #2 from section 10.2 in your book.

Solution 5

\[A = \begin{bmatrix} i & 1 & i \\ 1 & i & i \end{bmatrix} \text{ so } A^H = \begin{bmatrix} 1 & -i \\ -i & 1 \\ -i & -i \end{bmatrix}.\]

\[A^H A = \begin{bmatrix} 0 & 2 & i + 1 \\ 2 & 0 & 1 + i \\ 1 - i & -i + 1 & 2 \end{bmatrix}, \]
\[A A^H = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}.\]

Both of these are Hermitian: their conjugate transpose is itself, \(M^H = M^T = M.\)
(There is also a second one that is real (and hence symmetric): this is just a coincidence.)

Problem 6 Wednesday 11/8

Do Problem #17 from section 10.2 in your book.

Solution 6

First find the eigenvalues: \(\lambda^2 - 2(\cos \theta)\lambda + 1 = 0\) has roots \(\lambda = \cos \theta \pm i \sin \theta.\) Notice that both eigenvalues have |\(\lambda| = 1, \) since \(Q\) is orthogonal.

Now find the eigenvectors. For \(\lambda_+ = \cos \theta + i \sin \theta,\) we want a vector \(x\) with \(\begin{bmatrix} -i \sin \theta & -i \sin \theta \\ \sin \theta & -\sin \theta \end{bmatrix} x = 0,\)
such as \(x_+ = \begin{bmatrix} 1 \\ -i \end{bmatrix} .\) Similarly, \(\lambda_- = \cos \theta - i \sin \theta\) has eigenvector \(x_- = \begin{bmatrix} 1 \\ +i \end{bmatrix} .\)
These eigenvectors are automatically orthogonal (that is, \((u_+, u_-) = 1(1) - i(-i) = 1 - 1 = 0),\) but we want the columns of \(U\) to be orthonormal, so we need to divide by the lengths: \(u_+ = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix} \)
and \(u_- = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ +i \end{bmatrix}.\)
Then our factorization is
\[
\begin{pmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\end{pmatrix}
\begin{pmatrix}
1/\sqrt{2} & 1/\sqrt{2} \\
-1/\sqrt{2} & i/\sqrt{2} \\
\end{pmatrix}
\begin{pmatrix}
\cos \theta + i \sin \theta & 0 \\
0 & \cos \theta - i \sin \theta \\
\end{pmatrix}
\begin{pmatrix}
1/\sqrt{2} & i/\sqrt{2} \\
1/\sqrt{2} & -i/\sqrt{2} \\
\end{pmatrix}
Q \quad U \quad \Lambda \quad U^H
\]

Problem 7 Wednesday 11/8

Do Problem #31 from section 10.2 in your book.

(Hints: U is a matrix, so $U^H U = I$. Λ is a matrix, so $\Lambda^H \Lambda$ and $\Lambda \Lambda^H$ are .)

Solution 7

(Answers to hints: U is unitary, so $U^H U = I$. Λ is diagonal, so $\Lambda^H \Lambda = \Lambda \Lambda^H$.)

$A^H A = (U \Lambda^H U^H)(U \Lambda U^H) = U \Lambda^H \Lambda U^H$, $AA^H = (U \Lambda U^H)(U \Lambda^H U^H) = U \Lambda \Lambda^H U^H$, and since $\Lambda^H \Lambda = \Lambda \Lambda^H$, these are equal.

Problem 8 Wednesday 11/8

Do Problem #7 from section 10.3 in your book.

Solution 8

Here's one step of the factorization of the Fourier matrix F_4:

$$
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & i & i^2 & i^3 \\
1 & i^2 & i^4 & i^5 \\
1 & i^3 & i^6 & i^9
\end{bmatrix}
\begin{bmatrix}
1 & 1 & i & i \\
1 & 1 & i^2 & i^3 \\
1 & 1 & i^4 & i^5 \\
1 & 1 & i^6 & i^7
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & -i \\
1 & -i \\
1 & -i
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
2 & 0 \\
0 & 0
\end{bmatrix}
$$

Now just multiply:

$$
F_4 c =
\begin{bmatrix}
1 & 1 \\
1 & -1 \\
1 & -i \\
1 & -i
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & i^2 \\
1 & 1 \\
1 & i^2
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
2 & 0 \\
0 & 0
\end{bmatrix}
$$

So $c = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ (the frequency-space representation of $f(t) = 1e^{0\pi t} + 0e^{(1/2)\pi t} + e^{i\pi t} + 0e^{(3/2)\pi t}$)

becomes $y = \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix}$ (the time-space representation, $\begin{bmatrix} f(0) = 2 \\ f(1) = 0 \\ f(2) = 2 \\ f(3) = 0 \end{bmatrix}$).

Now do the same for $c = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}$; we get $c = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \rightsquigarrow y = \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix}$.

(In other words, $f(t) = 0e^{0\pi t} + 1e^{(1/2)\pi t} + 0e^{i\pi t} + 1e^{(3/2)\pi t}$ has time-space representation $\begin{bmatrix} f(0) = 2 \\ f(1) = 0 \\ f(2) = -2 \\ f(3) = 0 \end{bmatrix}$.)
Problem 9 Monday 11/13

Do Problem #16 from section 6.3 in your book.

Solution 9

The power series for e^{kt} is $1 + kt + \frac{k^2 t^2}{2} + \frac{k^3 t^3}{6} + \frac{k^4 t^4}{24} + \ldots$

Same thing for $e^{At} = 1 + At + \frac{A^2 t^2}{2} + \frac{A^3 t^3}{6} + \frac{A^4 t^4}{24} + \ldots$

Differentiate: $\frac{d}{dt}e^{At} = A + \frac{A^2 t}{2} + \frac{A^3 t^2}{2} + \frac{A^4 t^3}{6} + \ldots$

which is A times the first four terms above.

(This is almost a proof that $\exp(At)$ is a solution to $u' = Au$ — we should check that all the other terms work, too! Fortunately, it’s easy to see that the pattern holds.)

Problem 10 Monday 11/13

Do Problem #22 from section 6.3 in your book.

Then solve $u' = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} u$ for initial condition $u(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Is the solution stable as $t \to \infty$? Why or why not?

Solution 10

\[
\begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1}
\]

so

\[
\begin{bmatrix} 1 & 1/2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^t & 0 \\ 0 & e^{3t} \end{bmatrix} \begin{bmatrix} 1 & -1/2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^t & -\frac{1}{2} e^t + \frac{1}{2} e^{3t} \\ 0 & e^{3t} \end{bmatrix} \begin{bmatrix} e^t & e^{3t} \\ -\frac{1}{2} e^t + \frac{1}{2} e^{3t} \end{bmatrix}
\]

At $t = 0$, $\exp(At)$ reduces to $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, as it should.

Solving $u' = Au$:

\[
\begin{bmatrix} e^t & -\frac{1}{2} e^t + \frac{1}{2} e^{3t} \\ 0 & e^{3t} \end{bmatrix} = \begin{bmatrix} e^t & e^{3t} \\ 0 & 2 e^{3t} \end{bmatrix}
\]

As $t \to \infty$ both components go to infinity, so this is not stable.