Your PRINTED name is: ____________________________

Please circle your recitation:

1) T 10 2-131 J.Yu 2-348 4-2597 jyu
2) T 10 2-132 J. Aristoff 2-492 3-4093 jeffa
3) T 10 2-255 Su Ho Oh 2-333 3-7826 suho
4) T 11 2-131 J. Yu 2-348 4-2597 jyu
5) T 11 2-132 J. Pascaleff 2-492 3-4093 jpascale
6) T 12 2-132 J. Pascaleff 2-492 3-4093 jpascale
7) T 12 2-131 K. Jung 2-331 3-5029 kmjung
8) T 1 2-131 K. Jung 2-331 3-5029 kmjung
9) T 1 2-136 V. Sohinger 2-310 4-1231 vedran
10) T 1 2-147 M. Frankland 2-090 3-6293 franklan
11) T 2 2-131 J. French 2-489 3-4086 jfrench
12) T 2 2-147 M. Frankland 2-090 3-6293 franklan
13) T 2 4-159 C. Dodd 2-492 3-4093 cdodd
14) T 3 2-131 J. French 2-489 3-4086 jfrench
15) T 3 4-159 C. Dodd 2-492 3-4093 cdodd
Given real numbers a, b and c, find x, y and z such that the matrix B below is guaranteed to be singular with real eigenvalues and orthogonal eigenvectors.

\[
B = \begin{bmatrix}
 a & b & a + b \\
 b & c & b + c \\
 x & y & z
\end{bmatrix}.
\]
This page intentionally blank.
2 (12 pts.) The matrix

\[A = \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & p
\end{bmatrix}. \]

(a) What are the eigenvalues of A (possibly in terms of \(p \))?

(b) If \(p \) is not 0, find an eigenvector that is not in the nullspace.

(c) What are the singular values of A (possibly in terms of \(p \))?

(d) Find a nonzero solution \(u(t) \) to \(\frac{du}{dt} = (A + 2009I)u \). Check that your answer is correct. (Note that \(A + 2009I \) is the matrix above with the upcoming new year added to the diagonal elements.)
This page intentionally blank.
3 (8 pts.) A 4x4 square matrix A has singular values 3, 2, 1, and 0. Find an eigenvalue of A. Briefly explain your answer.
This page intentionally blank.
The square matrix A has QR decomposition $A = QR$ where Q is orthogonal and R is upper triangular with diagonal elements all equal to 1.

(a) What is the determinant of $A^T A$?

(b) What are all the pivots of $A^T A$?

(c) Are the matrices QR and RQ similar?
This page intentionally blank.
All matrices in this question are $n \times n$. We have that $C = A^{-1}BX$. Propose an X which guarantees that B and C have the same eigenvalues.
This page intentionally blank.
All you are told about a 3×3 matrix A is that five of the nine entries are 1, and the other four are 0. For the ranks below, exhibit a matrix A with this property, or else briefly (but convincingly) argue that it is impossible.

(a) A has rank 0.

(b) A has rank 2.

(c) A has rank 3.
This page intentionally blank.
7 (10 pts.) (Do two of the three problems below. Please avoid any confusion to the graders as to which two you chose.)

(a) All you are told about a 100 by 100 matrix is that all of its entries are even integers. Must the determinant be odd? Must the determinant be even? Argue your answer convincingly.

(b) Give an example, if possible, of a 100 by 100 matrix with odd integer entries but an even determinant.

(c) All you are told about a 100 by 100 matrix is that all of its entries are odd integers. Must the determinant be odd? Must the determinant be even? Argue your answer convincingly.
This page intentionally blank.
The functions of the form

\[f(x) = c_1 + c_2e^x + c_3e^{2x}, \]

form a three dimensional vector space \(V \).

(a) The transformation \(\frac{d}{dx} \) can be written as a 2x3 matrix when the domain is specified to have basis \(\{1, e^x, e^{2x}\} \), and the range has basis \(\{e^x, e^{2x}\} \). Write down this 2x3 matrix.

(b) On the above three dimensional vector space \(V \), is the evaluation of \(f \) at \(x = 7 \) a linear transformation from that space to \(\mathbb{R} \)?

(c) On the above three dimensional vector space \(V \), is the transformation that takes \(f(x) \) to \(\int_0^x f(t) \, dt \) a linear transformation from that three dimensional space to itself (from \(V \) to \(V \))?
This page intentionally blank.
Suppose an n by n matrix has the property that its nullspace is equal to its column space.

(a) Can the matrix be the zero matrix?

(b) Possibly in terms of n, what is the rank of the matrix?

(c) What are the eigenvalues of this matrix? (Briefly explain your answer.

 Hint: It might be useful to consider applying A more than once in some way.)

(d) Give an example of a 2 by 2 such matrix.

(e) Perhaps using the previous case twice somehow, give an example of a 4 x 4 such matrix.
Have a great holiday vacation! Thank you for taking linear algebra.