SOLUTIONS TO PSET 9

Problem 1. (5 points each)
1. B = M⁻¹AM and C = N⁻¹BN imply C = N⁻¹M⁻¹AMN = (MN)⁻¹A(MN). If B is similar to A and C is similar to B, then A is similar to C.
2. F⁻¹AF = C = G⁻¹BG, so B = GF⁻¹AFG⁻¹ = (FG⁻¹)⁻¹A(FG⁻¹). If C is similar to A and also to B, then A and B are similar.

Problem 2. Let M be a 4 × 4 matrix. Then JM = \[
\begin{pmatrix}
m_{21} & m_{22} & m_{32} & m_{42} \\
0 & 0 & 0 & 0 \\
m_{41} & m_{42} & m_{43} & m_{44} \\
0 & 0 & 0 & 0
\end{pmatrix}
\]
while
MK = \[
\begin{pmatrix}
0 & m_{11} & m_{12} & 0 \\
0 & m_{21} & m_{22} & 0 \\
0 & m_{31} & m_{32} & 0 \\
0 & m_{41} & m_{42} & 0
\end{pmatrix}
\]. If JM = MK, then we conclude from comparing these two matrices that m_{11} = m_{22} = 0, and m_{21} = 0, and m_{31} = m_{42} = 0, and m_{41} = 0. Thus det(M) = 0 and M is not invertible as required.

Problem 3. (2.5 points each)
a) True. If A = MBM⁻¹ with B invertible, then det(A) = det(M)det(B)det(M⁻¹) = det(B) ≠ 0.
b) False. \[
\begin{pmatrix}
1 & 1 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 3 \\
2 & -1
\end{pmatrix}
= \begin{pmatrix}
10 & -3 \\
15 & -5
\end{pmatrix}.
\]
c) False. We know (problem 13) that A and A’ are similar. So just choose a nonzero skew-symmetric matrix.
d) True. If A is similar to A + I, then tr(A) = tr(A + I) = tr(a) + n, which is impossible.

Problem 4. We have that \{v_i\} and \{u_i\} are orthonormal bases in \(R^m\). We want A such that Av_i = u_i. If we let V be the matrix whose columns are the v_i, and U the matrix whose columns are the u_i, then what we are asking for is AV = U, or, equivalently, A = UV^T.

Problem 5. Here, we suppose that the \(m \times n\) matrix A has orthogonal columns, labelled \(\{w_i\}\), with lengths \(\{\sigma_i\}\). This tells us that \(A' A = \Lambda\), where \(\Lambda\) is the diagonal matrix with eigenvalues \(\sigma_i^2\). Thus \(V = I\). So the SVD reads \(A = U\Sigma\). So we can let \(\Sigma\) be the \(m \times n\) matrix whose first \(n\) diagonal elements are the \(\sigma_i\) and all of whose other elements are 0 (note that \(m \geq n\) because the columns of A are orthogonal, hence independent), and we can let U be the orthogonal \(m \times m\) matrix whose first \(n\) columns are \((1/\sqrt{\sigma_i})w_i\), and the rest of whose columns form an orthonormal basis for the left nullspace of A.

Problem 6. (5 points each)
1. We have \(T: M_2(\mathbb{R}) \rightarrow M_2(\mathbb{R})\) given by \(T(M) = AM\). Then \(T(M_1 + M_2) = A(M_1 + M_2) = AM_1 + AM_2 = T(M_1) + T(M_2)\). \(T(\lambda M) = A(\lambda M) = \lambda (AM) = \lambda T(M)\); so \(T\) is linear.
2. Suppose \(A = \begin{pmatrix}1 & 2 \\ 3 & 5\end{pmatrix}\). Then \(det(A) = -1\), so \(A\) is invertible. Now, \(T(M) = AM = 0\) implies \(0 = A^{-1}(AM) = M\). Further, given \(B\), \(T(A^{-1}B) = A(A^{-1}B) = B\).

Problem 7. (2 points for 15, 2 each for 17)
1. Now put \(A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \). Then \(\det(A) = 0 \), so \(A \) is not invertible. Thus \(T(M) = AM = I \)
is impossible. Further, \(\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} \begin{pmatrix} -2 & -2 \\ 1 & 1 \end{pmatrix} = 0 \).

2. a) True. \(T^2(A) = TT(A) = T(A') = (A')' = A \).
b) True. \(T \) is invertible (it is its own inverse, by part a), so \(\ker(T) = 0 \).
c) True. For any \(B, B = T(B') \).
d) False. This is just the skew-symmetry condition.

Problem 8. Clearly we have
\[B = \begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \] as \(S(1) = 0, S(x) = 0, S(x^2) = 2, S(x^3) = 6x \).

Problem 9. (5 points each)
1. The matrix for \(T \) is
\(\begin{pmatrix} T(v_1) & T(v_2) & T(v_3) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \). Further, \(T(v_1 - v_2) = w_1 + w_2 + w_3 - (w_2 + w_3) = w_1 \).
2. Well, \(T^{-1}(w_3) = v_3 \) clearly. Next, \(T^{-1}(w_2 + w_3) = v_2 \), so \(T^{-1}(w_2) = v_2 - v_3 \). Finally, \(v_1 = T^{-1}(w_1 + w_2 + w_3) = T^{-1}(w_1) + v_2 - v_3 + v_3 = T^{-1}(w_1) + v_2 \), so \(T^{-1}(w_1) = v_1 - v_2 \). Thus \(A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \). \(Tv = 0 \) only happens when \(v = 0 \), because \(T \) is invertible.

Problem 10. We have \(A = QR \). Now, any invertible matrix \(B \) can be interpreted as the c.o.b. matrix from the basis which consists of columns of \(B \) to the standard basis (this is his definition of c.o.b. matrix in the text). Thus, \(A \) is the c.o.b. matrix from the basis \(\{a_1, a_2, a_3\} \) to the standard basis and \(Q \) is the c.o.b. from the basis \(\{q_1, q_2, q_3\} \) to the standard basis. So \(Q^{-1} \) is the c.o.b. matrix from the standard basis to the basis \(\{q_1, q_2, q_3\} \). So \(R = Q^{-1}a \) is the c.o.b. matrix from the basis \(\{a_1, a_2, a_3\} \) to the basis \(\{q_1, q_2, q_3\} \).