Problem 1: Do problem 39 from section 5.3.

Problem 2: Do problems 6 from section 6.1.

Problem 3: Problem 19 section 6.1.

Problem 4: Problem 9 section 6.2.

Problem 5: Do problem 11 in section 6.2.

Problem 6: Do problem 12 in section 6.2.

Problem 7: Let Q be an n by n orthogonal matrix. Let A, B, and C be n by n matrices.

(a) Show that $\det(QAQ^T) = \det(A)$.

(b) The trace of A is the sum of the diagonal entries. $\text{tr}A = \sum_{i=1}^{n}a_{ii}$. Show that $\text{tr}(BC) = \text{tr}(CB)$.

(c) Use the result of part (b) to show that $\text{tr}(QAQ^T) = \text{tr}(A)$.

(d) Consider the matrix $A - \lambda I$. Use the big determinant formula to show that $\det(A - \lambda I)$ is a polynomial of degree n.
(e) So now we have
\[\det(A - \lambda I) = \sum_{i=0}^{n} c_i \lambda^i, \]
where \(c_i \) just denotes the coefficient of the term \(\lambda^i \) in this polynomial. In the case that the dimension of \(A \) is 2 by 2, identify the coefficients of this polynomial in terms of trace and determinant.

(d) Show that each coefficient \(c_i \) is invariant in the sense that, given orthogonal matrix \(Q \):
\[\det(QAQ^T - \lambda I) = \det(A - \lambda I). \]