A matrix is symmetric if A=A'

Diagonal matrices are symmetric

In [4]:
D=diagm(1:5);
(D,D')
Out[4]:
(
5x5 Array{Int64,2}:
 1  0  0  0  0
 0  2  0  0  0
 0  0  3  0  0
 0  0  0  4  0
 0  0  0  0  5,

5x5 Array{Int64,2}:
 1  0  0  0  0
 0  2  0  0  0
 0  0  3  0  0
 0  0  0  4  0
 0  0  0  0  5)
In [9]:
issym(D)
Out[9]:
true

If S is symmetric, inv(S) ' = inv(S') = inv(S) hence inv(S) is symmetric

In [5]:
S=[3 12;12 5]
Out[5]:
2x2 Array{Int64,2}:
  3  12
 12   5
In [8]:
round(inv(S),7)
Out[8]:
2x2 Array{Float64,2}:
 -0.0387597   0.0930233
  0.0930233  -0.0232558

If R is any rectangular matrix R'*R is symmetric: Why?

In [12]:
R=rand(5,2); round(R*R',3)
Out[12]:
5x5 Array{Float64,2}:
 0.871  1.166  0.816  0.085  0.987
 1.166  1.598  1.004  0.113  1.35 
 0.816  1.004  0.972  0.081  0.856
 0.085  0.113  0.081  0.008  0.096
 0.987  1.35   0.856  0.096  1.14 
In [11]:
issym(R*R')
Out[11]:
true
In [13]:
a=R'*R
Out[13]:
2x2 Array{Float64,2}:
 1.7064   1.93981
 1.93981  2.88402
In []:
Fact without proof: if S is symmetric, elimination produces S=LDL'

Permutation Matrices

In [21]:
A=randn(5,5);
(L,U,P)=lu(A);
(round(L,3),round(U,3),round(P,1))
Out[21]:
(
5x5 Array{Float64,2}:
  1.0     0.0     0.0     0.0    0.0
  0.835   1.0     0.0     0.0    0.0
  0.607   0.411   1.0     0.0    0.0
 -0.885   0.216  -0.248   1.0    0.0
 -0.519  -0.577  -0.639  -0.984  1.0,

5x5 Array{Float64,2}:
 -0.831  -1.29    0.041   0.83    2.648
  0.0     2.539   1.151  -0.157  -4.152
  0.0     0.0    -1.898  -1.537   0.432
  0.0     0.0     0.0     0.841   4.13 
  0.0     0.0     0.0     0.0     1.541,

5x5 Array{Float64,2}:
 0.0  1.0  0.0  0.0  0.0
 0.0  0.0  1.0  0.0  0.0
 0.0  0.0  0.0  0.0  1.0
 1.0  0.0  0.0  0.0  0.0
 0.0  0.0  0.0  1.0  0.0)
In [22]:
(round(P*A,3),round(L*U,3))
Out[22]:
(
5x5 Array{Float64,2}:
 -0.831  -1.29    0.041   0.83    2.648
 -0.694   1.461   1.186   0.537  -1.941
 -0.505   0.261  -1.4    -1.097   0.332
  0.736   1.689   0.682   0.453   0.784
  0.431  -0.794   0.527  -0.186  -1.78 ,

5x5 Array{Float64,2}:
 -0.831  -1.29    0.041   0.83    2.648
 -0.694   1.461   1.186   0.537  -1.941
 -0.505   0.261  -1.4    -1.097   0.332
  0.736   1.689   0.682   0.453   0.784
  0.431  -0.794   0.527  -0.186  -1.78 )

Vector Spaces

A real vector space is a set of "vectors" with an addition and multiplication by scalars that satisfies eight rules (rules coming soon)

vectors in standard format

In [27]:
v=rand(0:9, 5);  w=rand(0:9,5); [v w]
Out[27]:
5x2 Array{Int64,2}:
 4  0
 6  3
 8  9
 3  8
 8  3
In [28]:
v*10
Out[28]:
5-element Array{Int64,1}:
 40
 60
 80
 30
 80
In [29]:
v+w
Out[29]:
5-element Array{Int64,1}:
  4
  9
 17
 11
 11

arrays themselves are vectors

In [31]:
A=rand(0:9,2,2); B=rand(0:9,2,2); (A,B)
Out[31]:
(
2x2 Array{Int64,2}:
 3  3
 9  5,

2x2 Array{Int64,2}:
 2  9
 7  7)
In [32]:
A*10
Out[32]:
2x2 Array{Int64,2}:
 30  30
 90  50
In [33]:
A+B
Out[33]:
2x2 Array{Int64,2}:
  5  12
 16  12

functions are vectors

In [35]:
typeof(sin)
Out[35]:
Function
In [36]:
sin+cos
no method +(Function,Function)
at In[36]:1
In [37]:
+(f::Function,g::Function)=x->f(x)+g(x);
In [38]:
(sin+cos)(12)
Out[38]:
0.3072810407320572
In [39]:
sin(12)+cos(12)
Out[39]:
0.3072810407320572
In [39]:
*(c::Number,f::Function) = x->c*f(x);
In [40]:
(10*sin)(5)
Out[40]:
-9.589242746631385
In [41]:
10*sin(5)
Out[41]:
-9.589242746631385
In [44]:
x=-10:.001:10; plot(x, (sin+cos)(x));
In [47]:
plot( x, (10cos)(x));
1. x+y = y+x COMMUTATIVE LAW OF ADDITION 2. x+ (y+z) = (x+y)+z ASSOCIATIVE LAW OF ADDITION 3. There is a unique "zero vector" such that x+0 = x ADDITIVE IDENTIY 4. For each x there is a -x such that x + (-x) = 0 ADDITIVE INVERSES 5. 1 * x = x MULTIPLICATIVE IDENTITY 6. (c1*c2)x=c1*(c2*x) ASSOCIATIVE LAW OF SCALAR,SCALAR,VECTOR MULTIPLICATIONS 7. c(x+y)-cx+cy MULTIPLICATION DISTRIBUTES OVER VECTOR ADDITION 8. (c1+c2)x = c1 x + c2 x SCALAR ADDITION DISTRIBUTES OVER MULTIPLICATION
In []:
Subspaces: Are sums in the space?  Are constant times vector in the space?