18.06	Professor E	delman	Quiz	3 I	December 4, 2013			
					Grading			
Your P	1							
					2			
					3			
Please circle your recitation:								
1 T 9	Dan Harris	E17-401G	3-7775	dmh				

2	T 10	Dan Harris	E17-401G	3-7775	dmh	
3	T 10	Tanya Khovanova	E18-420	4-1459	tanya	
4	T 11	Tanya Khovanova	E18-420	4-1459	tanya	
5	T 12	Saul Glasman	E18-301H	3-4091	sglasman	
6	Τ1	Alex Dubbs	32-G580	3-6770	dubbs	
7	T 2	Alex Dubbs	32-G580	3-6770	dubbs	

1 (32 pts.) (2 points each)

There are sixteen 2×2 matrices whose entries are either 0 or 1. For each of the sixteen, write down the two singular values. Time saving hint: if you really understand singular values, then there is really no need to compute AA^T or A^TA , but it is okay if you must.

2 (30 pts.) (3 points each: Please circle true or false, and either way, explain briefly.)

a) If A and B are invertible, then so is (A + B)/2. True? False? (Explain briefly).

b) If A and B are Markov, then so is (A + B)/2. True? False? (Explain briefly).

c) If A and B are positive definite, then so is (A+B)/2. True? False? (Explain briefly).

d) If A and B are diagonalizable, then so is (A + B)/2. True? False? (Explain briefly).

e) If A and B are rank 1, then so is (A + B)/2. True? False? (Explain briefly).

f) If A is symmetric then so is e^A .	True?	False? (Explain briefly).
	T O	
g) If A is Markov then so is e^A .	True?	False? (Explain briefly).
h) If A is symmetric, then e^A is positive definite.	True?	False? (Explain briefly).
i) If A is singular, then so is e^A .	True?	False? (Explain briefly).
, , ,		
j) If A is orthogonal, then so is e^A .	True?	False? (Explain briefly).

Let
$$A = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$$
.

a) (10 pts.) Find a nonzero solution y(t) in R^2 to dy/dt = Ay that is independent of t, in other words, y(t) is a constant vector in R^2 . (Hint: why would a vector in the nullspace of A have this property?)

b) (10 pts.) Show that e^{At} is Markov for every value of $t \ge 0$.

c) (10 pts.) What is the limit of e^{At} as $t \to \infty$?

d) (8 pts.) What is the steady state vector of the Markov matrix e^A ?