18.06 Professor Edelman Quiz 3 December 4, 2013

Grading

Your PRINTED name is:
2
3

Please circle your recitation:

1	T 9	Dan Harris	E17-401G	$3-7775$	dmh
2	T 10	Dan Harris	E17-401G	$3-7775$	dmh
3	T 10	Tanya Khovanova	E18-420	$4-1459$	tanya
4	T 11	Tanya Khovanova	E18-420	$4-1459$	tanya
5	T 12	Saul Glasman	E18-301H	$3-4091$	sglasman
6	T 1	Alex Dubbs	$32-G 580$	$3-6770$	dubbs
7	T 2	Alex Dubbs	$32-G 580$	$3-6770$	dubbs

This page intentionally blank.

1 (32 pts.) (2 points each)

There are sixteen 2×2 matrices whose entries are either 0 or 1 . For each of the sixteen, write down the two singular values. Time saving hint: if you really understand singular values, then there is really no need to compute $A A^{T}$ or $A^{T} A$, but it is okay if you must.

This page intentionally blank.

This page intentionally blank.

This page intentionally blank.

2 (30 pts.) (3 points each: Please circle true or false, and either way, explain briefly.)
a) If A and B are invertible, then so is $(A+B) / 2$. True? False? (Explain briefly).
b) If A and B are Markov, then so is $(A+B) / 2$. True? False? (Explain briefly).
c) If A and B are positive definite, then so is $(A+B) / 2$. True? False? (Explain briefly).
d) If A and B are diagonalizable, then so is $(A+B) / 2$. True? False? (Explain briefly).
e) If A and B are rank 1 , then so is $(A+B) / 2$. True? False? (Explain briefly).
f) If A is symmetric then so is e^{A}.
g) If A is Markov then so is e^{A}.

True? False? (Explain briefly).
h) If A is symmetric, then e^{A} is positive definite.

True?
False? (Explain briefly).
i) If A is singular, then so is e^{A}.

True?
False? (Explain briefly).
j) If A is orthogonal, then so is e^{A}.

False? (Explain briefly).

3 (38 pts.)

Let $A=\left(\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right)$.
a) (10 pts.) Find a nonzero solution $y(t)$ in R^{2} to $d y / d t=A y$ that is independent of t, in other words, $y(t)$ is a constant vector in R^{2}. (Hint: why would a vector in the nullspace of A have this property?)
b) (10 pts.) Show that $e^{A t}$ is Markov for every value of $t \geq 0$.
c) (10 pts.) What is the limit of $e^{A t}$ as $t \rightarrow \infty$?
d) (8 pts .) What is the steady state vector of the Markov matrix e^{A} ?

