1. (a) Linear. XB is linear since by definition of matrix multiplication each entry of XB is just a linear combination of the entries of X. Similarly, AX is linear. Since a composition of linear transformations is linear, we also have AXB is linear.

(b) Not linear. Consider any non-zero X. Then $(2X)^TA(2X) = 4X^TAX \neq 2X^TAX$.

(c) Linear. AX and XB are linear as before, and the sum of linear transformations is linear.

(d) Linear. The trace is just a linear combination of the entries of X.

(e) Not linear. Consider $X = I$, the 2 by 2 identity matrix. Then $\det(2I) = 4 \neq 2 \det(I)$.

2. Yes, it is linear.

We have the transformation $T(f(x)) = g(x) = f(x^2 + x)$. This is just saying that our transformation T replaces each x with $x^2 + x$. For linearity, we need to check that $cf(x)$ goes to $cg(x)$ and that $f_1(x) + f_2(x)$ goes to $g_1(x) + g_2(x)$. Clearly,

$$T(cf(x)) = cf(x^2 + x) = cg(x)$$

and

$$T(f_1(x) + f_2(x)) = f_1(x^2 + x) + f_2(x^2 + x) = g_1(x) + g_2(x),$$

thus this transformation is linear.

3. Problem 37 from 7.2.

We first find the result of the proposed transformation on each of the input basis “vectors” v_1, v_2, v_3, v_4. These can be written as linear combinations of the same basis “vectors”.

For example,

$$T(v_1) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ c \end{bmatrix} = av_1 + cv_3.$$

Similarly,

$$T(v_2) = av_2 + cv_4, \quad T(v_3) = bv_1 + dv_3, \quad T(v_4) = bv_2 + dv_4.$$

Noting that the transformation of the basis “vector” v_i gives us the ith column of A, we conclude

$$A = \begin{bmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{bmatrix}.$$
4. Problem 35 from 7.2.

The Haar wavelet basis for \(R^8 \) is

\[
\begin{align*}
 w_1 &= [1, 1, 1, 1, 1, 1, 1, 1]^T \\
 w_2 &= [1, 1, 1, 1, -1, -1, -1, -1]^T \\
 w_3 &= [1, 1, -1, -1, 0, 0, 0, 0]^T \\
 w_4 &= [0, 0, 0, 0, 1, 1, -1, -1]^T \\
 w_5 &= [1, -1, 0, 0, 0, 0, 0, 0]^T \\
 w_6 &= [0, 0, 1, -1, 0, 0, 0, 0]^T \\
 w_7 &= [0, 0, 0, 0, 1, -1, 0, 0]^T \\
 w_8 &= [0, 0, 0, 0, 0, 0, 1, -1]^T.
\end{align*}
\]

Note that these vectors form an orthogonal basis for \(R^8 \).

5. Problem 5 from 7.2.

\(T \) is a linear transformation from the three-dimensional space \(V \) to the three-dimensional space \(W \). \(T(v_i) \) is a combination \(a_{1i}w_1 + a_{2i}w_2 + a_{3i}w_3 \) of the output basis for \(W \). The \(a \)'s then form the \(i \)th column of the matrix \(A \). For example,

\[
 T(v_1) = 0w_1 + 1w_2 + 0w_3
\]

gives the first column: \([0, 1, 0]^T\). Repeating this we find,

\[
 T(v_2) = 1w_1 + 0w_2 + 1w_3,
\]
\[
 T(v_3) = 1w_1 + 0w_2 + 1w_3.
\]

Therefore,

\[
 A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix},
\]

and

\[
 A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}.
\]

This is equivalent to the fact that \(T(v_1 + v_2 + v_3) = 2w_1 + w_2 + 2w_3 \), which is demonstrable by virtue of the linearity of \(T \):

\[
 T(v_1 + v_2 + v_3) = T(v_1) + T(v_2) + T(v_3) = (w_2) + (w_1 + w_3) + (w_1 + w_3) = 2w_1 + w_2 + 2w_3.
\]
6. Problem 23 from 7.2.

We require that the matrix \(M = \begin{bmatrix} m_1 & m_4 & m_7 \\ m_2 & m_5 & m_8 \\ m_3 & m_6 & m_9 \end{bmatrix} \) is invertible, namely \(\det(M) \neq 0 \).

Note: the matrix \(M \) represents a change of basis matrix that takes parabolas in the proposed basis \(v_1, v_2, v_3 \) to a different (obviously complete) basis for parabolas \(w_1 = 1, w_2 = x, w_3 = x^2 \). Thus to be able to represent all parabolas from this complete basis \((w_1, w_2, w_3) \) in the proposed basis \((v_1, v_2, v_3) \), we must require that \(M^{-1} \) exists.

7. Problem 8 from 9.3.

To find \(|\lambda|_{\text{max}} \) we need to find the eigenvalues of the iteration matrix \(B = S^{-1}T \).

For **Jacobi**, \(S = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \) and \(T = \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} \).

So we have \(B = S^{-1}T = \begin{bmatrix} 1/a & 0 \\ 0 & 1/d \end{bmatrix} \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} 0 & b/a \\ c/d & 0 \end{bmatrix} \).

The characteristic polynomial of \(B \) is \(\lambda^2 - bc/ad = 0 \) which gives \(\lambda = \pm(bc/ad)^{1/2} \).

So \(|\lambda| = |(bc/ad)^{1/2}| = |bc/ad|^{1/2} \). Therefore \(|\lambda|_{\text{max}} = |bc/ad|^{1/2} \).

For **Gauss-Seidel**, \(S = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix} \) and \(T = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} \).

So we have \(B = S^{-1}T = \begin{bmatrix} 1/a & 0 \\ -c/ad & 1/d \end{bmatrix} \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & b/a \\ 0 & -bc/ad \end{bmatrix} \).

\(B \) is upper triangular so we can read the eigenvalues off the diagonal: \(\lambda = 0, -bc/ad \).

So \(|\lambda| = 0, |bc/ad| \). Therefore \(|\lambda|_{\text{max}} = |bc/ad| \).