18.06 Computational PSet 1

You may use any computer language. We encourage trying out Julia. Please submit printouts with the problem set.
a.) Create the $n \times n$ matrix

$$
E_{n}=\left(\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
& 1 & 1 & \ldots & 1 \\
& & \ddots & \ddots & \\
& & & 1 & 1 \\
& & & & 1
\end{array}\right)
$$

In some languages this is triu(ones (n, n)).
Using the matrix squaring operator create an $n \times n$ "triangular" matrix with 1 on the main diagonal, 2 above, etc.

$$
M_{n}=\left(\begin{array}{ccccc}
1 & 2 & \ldots & n-1 & n \\
& 1 & 2 & \ldots & n-1 \\
& & \ddots & \ddots & \\
& & & 1 & 2 \\
& & & & 1
\end{array}\right)
$$

b.) You very likely have heard of the triangular numbers:

$$
T_{n}=1+2+\ldots+n=n(n+1) / 2
$$

Don't use cumsum, or sum or " + ", just matrix products or powers to create the matrix that has the triangular numbers on the diagonals:

$$
S_{n}=\left(\begin{array}{ccccc}
1 & 3 & \ldots & (n-1) n / 2 & n(n+1) / 2 \\
& 1 & 3 & \ldots & (n-1) n / 2 \\
& & \ddots & \ddots & \\
& & & 1 & 3 \\
& & & & 1
\end{array}\right)
$$

Explain roughly (not too formal a proof), why your idea works.
c.) Don't stop. Keep going, and get the tetrahedral (see wikipedia) numbers. Explain briefly why this worked.
d.) Let $A=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 1\end{array}\right]$ and $B=\left[\begin{array}{llll}-1 & 2 & 1 & 4\end{array}\right]$.

Compute $(A B)^{10}$ on the computer. What is AB? What is BA? Explain how it's possible to compute $(A B)^{10}$ without a computer! Hint: $(A B)^{10}=$ $A(B A)^{9} B$.

