

18.06 Exam II

Lecturer: Townsend

6th November, 2015

Your	PRINTED	name is:	

Please CIRCLE your section:

	R01	Т	9 .	E17-128	Miriam Farber
	R02	\mathbf{T}	10	38-166	Sam Raskin
	R03	\mathbf{T}	10	E17-128	Miriam Farber
	R04	Τ	11	38-166	Sam Raskin
	R05	Τ	12	E17-133	Nate Harman
	R06	T	1	E17-139	Tanya Khovanova
	R07	T	2	E17-133	Tanya Khovanova
	R08	\mathbf{T}	2	38-166	Zach Abel
	R09	Т	3	38-166	Zach Abel
1					

Grading 1:

2:

3:

4:

1. (20 points in total. Each part is worth 5 points.)

Are the following statements below TRUE or FALSE? Give a brief reason.

(a) If A is a square matrix and $det(A) = \pm 1$, then A is an orthogonal matrix.

FALSE

$$A = \begin{pmatrix} 2 & 1 \\ 5 & 2 \end{pmatrix}$$

(b) If A is square and A = QR, then $|\det(A)| =$ product of diagonal entries of R. Here, Q is an orthogonal matrix and R is upper-triangular.

FALSE

|def(A) | = | prod of diag(R) |, consider A = (10)

Consider
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

(c) If Q is an $m \times n$ matrix with orthonormal columns and $m \ge n$, then $QQ^T = I_m$. Here, I_m is the $m \times m$ identity matrix.

FALSE: if m>n, ther QQT is of rank n + In.

(d) If A is a matrix with independent columns and $P = A(A^TA)^{-1}A^T$, then I - P projects onto the left null space $N(A^T)$.

TRUE: P projects outo C(A).

- 2. (20 points in total. Each part is worth 10 points.)
- (a) Calculate the determinant of the following 4×4 matrix:

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 3 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix}.$$

You must show your calculations to receive full credit.

(b) Here is a spaceship-shaped polygon in \mathbb{R}^2 :

What is the area of the spaceship? (Hint: Write down a formula using determinants.)

Area =
$$\frac{1}{2} \left| \det \left(\left[\underline{a} \right] \underline{b} + \underline{c} \right] \right) - \frac{1}{2} \left| \det \left(\left[\underline{b} \right] \underline{b} + \underline{c} \right] \right) \right|$$

- 3. (30 points total. Each part is worth 10 points)
- (a) Let $\underline{q}_1, \ldots, \underline{q}_n$ be a set of nonzero orthogonal vectors in \mathbb{R}^m . Show that $\underline{q}_1, \ldots, \underline{q}_n$ are linearly independent.

Suppose
$$c_1q_1+...+c_nq_n=0$$

need to show $c_1=0,...,c_n=0$.

let
$$Q = \begin{bmatrix} q_1 | \dots | q_n \end{bmatrix}$$
, $Q = C = C$
so $Q^T Q = C = C$

(b) Find Q and R in a A = QR factorization of A, where

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}.$$

$$V_{1} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} - \begin{bmatrix} \sqrt{2} & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$V_{2} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$Q_{1} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$$

$$Q_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad Q_{2} = \frac{1}{\sqrt{8}} \begin{bmatrix} -2 \\ 2 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -2/\sqrt{8} \\ 1/\sqrt{2} & 2/\sqrt{8} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{8} \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$$

(c) Calculate a and b in the least squares best fit equation

$$y = a + b\cos\left(\frac{\pi}{2}x\right)$$

to the data (x, y) = (-1, 0), (0, 1),and (2, 3).

(Note that $\cos(\frac{\pi}{2}) = 0$, $\cos(-\frac{\pi}{2}) = 0$, $\cos(0) = 1$, and $\cos(\pi) = -1$.)

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$$
, $A^{T} \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$

$$\therefore A^{T}A\begin{bmatrix} 9 \\ 9 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$A^{\mathsf{T}} \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$

$$bd = -1$$

4. (30 points total. Each part is worth 15 points)

(a) Here is an electrical circuit where each edge has a capacity/resistance of 1.

(i) Write down the incidence matrix of the graph. (Please use the same ordering of the nodes 1-5 and edges (a)-(f).)

(ii) If $\underline{x} = (x_1, x_2, x_3, x_4, x_5)^T$ is a vector of potentials at the nodes, then what are the physical interpretations of the vectors $\underline{e} = A\underline{x}$ and $\underline{w} = A^T\underline{e}$?

(b) Here is the incidence matrix for a graph:

$$A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}.$$

Give a basis for the four fundamental subspaces C(A), N(A), $C(A^T)$, and $N(A^T)$. (Hint: There is no need to compute the reduced-row echelon form because A is an incidence matrix.)

$$\begin{array}{c}
C(A): \\
\begin{pmatrix} \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} +1 \\ 0 \\ -1 \end{bmatrix} \\
N(A): \\
\begin{pmatrix} \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \\
\begin{pmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \\
\begin{pmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \\
\begin{pmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}
\end{pmatrix}$$

$$\begin{array}{c}
C(A^T): \\
C(A^T): \\
\begin{pmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}
\end{pmatrix}$$

GRAPH:

