
MIT 18.06 Exam 1 Solutions, Fall 2017
Johnson

Problem 1:

You are given three vectors ~v1 =

 1
−2
3

, ~v2 =

 1
0
5

, and ~v3 =

 0
2
4

.

Your goal is to find a linear combination of these three vectors (that is, mul-
tiply them by some numbers x1, x2, x3 and add them) to give the vector ~b = 2
−2
12

 .

(a) Write the equation in matrix form.

(b) Solve it to find the correct linear combination (x1, x2, x3) of ~v1, ~v2, and
~v3.

(c) Change one number in ~v3 to make the problem have no solution for most
vectors ~b, but give a new vector ~b′ for which there is still a solution. This
new ~b′ is in the space of the matrix .

(There are multiple correct answers for your new ~v3 and your new ~b′.)

Solution:
(a) Write the equation in matrix form.

Recall that if A = [c1|c2|c3] is a matrix with three columns c1,c2, c3 then

A

 x1

x2

x3

 = x1c1 + x2c2 + x3c3.

So, finding numbers x1, x2, x3 such that x1~v1+x2 ~v2+x3 ~v3 = ~b is the same

as solving the equation Ax = ~b for the unknown vector x =

 x1

x2

x3

,

1

where A = [~v1|~v2|~v3] =

 1 1 0
−2 0 2
3 5 4

.

(b) Solve it to find the correct linear combination (x1, x2, x3) of ~v1,
~v2, and ~v3.

We can solve the matrix equation by performing elimination on the aug-
mented matrix (A|b) to make it upper triangular: 1 1 0 2

−2 0 2 −2
3 5 4 12


 1 1 0 2

0 2 2 2
0 2 4 6


 1 1 0 2

0 2 2 2
0 0 2 4

 .

Then backsubstitution yields 2x3 = 4 =⇒ x3 = 2 , 2x2 + 2x3 = 2 =
2x2 + 4 =⇒ x2 = −1, x1 + x2 = 2 = x1 − 1 =⇒ x1 = 3, or

x =

 3
−1
2

 .

(c) Change one number in ~v3 to make the problem have no solution
for most vectors ~b, but give a new vector ~b′ for which there is
still a solution. This new ~b′ is in the space of
the matrix .

To not have solutions for most right-hand sides, the matrix needs to be
singular. We just need to change ~v3 so that we get a 0 instead of a 2 for the
last step of Gaussian elimination, to eliminate the third pivot, so we just

need to subtract 2 from the third component, and hence ~v′3 =

 0
2
2

 .

(Equivalently, this makes ~v′3 = ~v2−~v1 , so the column space becomes two-
dimensional.) Now we have a new matrix A′ = [~v1|~v2|~v3′], and to have a
solution to A′~x = ~b′ we just need ~b′ in the column space of A′. We can
just pick any ~x we want and let ~b′ = A′~x, or equivalently we can pick ~b′

to be any linear combination of the columns of A′. For example, we can
pick ~b′ to be one of the columns of A′, or the sum of two columns, or even
~b′ = ~0.

2

Problem 2:
Suppose A is some 3×3 matrix. We will transform this into a new 3×3 matrix
B by doing operations on the rows or columns of A as follows. For each part, (i)
explain how to express B as B=AE or B=EA (say which!) for some
matrix E (write down E!). Also, (ii) say whether E is invertible (that
is, whether the transformation is reversible). (You don’t need to compute E−1,
just say whether the inverse exists!)

(a) Swap the first and second rows of A.

Remember that left-multiplications do row operations and that right-
multiplications do column operations

(i) Swapping the first and second rows is an elementary row operation,
given by left-multiplication by the matrix

E =

 0 1 0
1 0 0
0 0 1


In this case we therefore have B = EA with E as above. (ii) E is invertible
(in fact E2 = I), since you can undo a row swap by swapping again.

(b) Keep the first row the same, then add the second row to the
third row, then replace the second row with the sum of the first
and third rows.

(i) We are again performing row operations, so we’ll have B = EA . To
find E, we can simply apply the operations to the identity matrix I. Keep-
ing the first row the same doesn’t change I. Adding the second row to the
third row yields the matrix:  1 0 0

0 1 0
0 1 1


Replacing the second row with the sum of the first and third rows gives
the final answer:

E =

 1 0 0
1 1 1
0 1 1


(ii) E is not invertible ; its columns are linearly independent. In fact, the

last two columns are equal. This means that the vector

 0
1
−1

 is in the

3

nullspace of E. But the nullspace of an invertible matrix must include
only the zero vector. Alternatively, we could just do elimination: 1 0 0

1 1 1
0 1 1


 1 0 0

0 1 1
0 1 1

 1 0 0
0 1 1
0 0 0


to see that we only have two pivots, hence E is singular.

(c) Subtract the first column from the second and third columns.

(i) We are now operating on columns, so we’ll have B = AE . To compute
E, as usual we can just apply the operation in question to the identity
matrix. Subtracting the first column from the second and third columns
gives the matrix:

E =

 1 −1 −1
0 1 0
0 0 1


(ii) E is invertible , because the corresponding column operation is in-
vertible: just add the first column back to the other two! In fact, from
this we can see that the inverse of E is

E−1 =

 1 1 1
0 1 0
0 0 1



4

Problem 3:
Suppose you have a 3× 3 matrix A satisfying A = B−1UL where

B =

 1 2 1
3 −1 1
−2 0 −1

 , U =

 1 1 2
0 1 −1
0 0 1

 , L =

 1 0 0
3 1 0
1 −2 1

 .

(a) The second column c of the matrix A−1 satisfies Ac = b for what
right-hand side b?

Recall that if M is any 3 × 3 matrix and if e2 =

 0
1
0

, then Me2 is

the second column of M . So c = A−1e2. We want to know what vector
Ac is. Using our fomrula for c, we get

Ac = A(A−1e2) = (AA−1)e2 = Ie2 = e2.

So b = e2 .

(b) The second column c of the matrix A−1 also satisfies ULc = d for
what right-hand side d?

We’re given that A = B−1UL, and from part (1) we have that Ac = e2.
Putting these together, we have B−1ULc = e2. Multipying both sides by
B on the left, we then get ULc = Be2. But Be2 is just the second column
of B, so we get:

ULc = Be2 =

 2
−1
0



So d =

 2
−1
0

 .

(c) Compute the second column c of the matrix A−1. (Important:
you don’t have to compute the inverse of any matrix!)

By (2), to get cwe can just solve the system ULc =

 2
−1
0

 for c. First,

we can solve for Lc by backsubstitution in the augmented matrix (U |d): 1 1 2 2
0 1 −1 −1
0 0 1 0

→
 1 1 0 2

0 1 0 −1
0 0 1 0

→
 1 0 0 3

0 1 0 −1
0 0 1 0



5

so Lc =

 3
−1
0

. We can now solve this lower-triangular sysem for cby

forward-substitution: 1 0 0 3
3 1 0 −1
1 −2 1 0

→
 1 0 0 3

0 1 0 −10
0 −2 1 −3

→
 1 0 0 3

0 1 0 −10
0 0 1 −23



So c =

 3
−10
−23

 .

Common mistake: Many students think that the inverse of a matrix
like U or L can be found just by flipping the signs of the off-diagonal
entries. It is true that sometimes inverses have a simple form for matrices
of special types, and it is true that you can just flip the signs to invert the
lower-triangular matrix describing a single elimination step, but it is not
true that you can invert a general U or L matrix this way (even if they
have 1’s on the diagonal).

6

Problem 4 (20 points):
In class and homework, we showed that multiplying two arbitrary m ×m ma-
trices, doing Gaussian elimination, or inverting an m×m matrix requires ∼ m3

arithmetic operations (that is, roughly proportional to m3 for large m). We
found that adding matrices, multiplying an m×m matrix by a vector, or solving
an m×m upper/lower triangular system of equations requires ∼ m2 operations.

Suppose that A is an m ×m matrix, x is an m-component column vector
(an m× 1 matrix), and r is an m-component row vector (a 1×m matrix).

• You could compute the same result xrAx by doing the multiplications
in different orders, for example x(r(Ax)) (multiplying terms from right
to left) or ((xr)A)x (multiplying from left to right). Give the rough
number of operations (say whether proportional to ∼ m, ∼ m2, ∼ m3,
or ∼ m4) for these two different orders (right to left and left to
right). Which one is the fastest for m = 1000?

Solution:
• Let’s look at x(r(Ax)) first. A is a matrix and x is a column vector,

so computing Ax takes ∼ m2 operations. Then r is a row vector and
Ax is a column vector, so computing r(Ax) is a dot product, just ∼ m
operations. Finally r(Ax) is a 1× 1 matrix, so computing x(r(Ax)) takes
∼ m operations (multiplying each entry by a number). The largest power
of m we saw was m2, so the whole procedure takes ∼ m2 operations .

• Now let’s look at ((xr)A)x. Note that x is a column vector and r is a row
vector, so computing xr takes ∼ m2 operations — that is, the result is an
m × m matrix, and each entry involves a different multiplication, hence
exactly m2 multiplications are needed. Then xr is a m ×m matrix, and
so is A, so computing (xr)A is a matrix–matrix product that takes ∼ m3

operations (as given above). Finally result (xr)A is then another m ×m
matrix, so computing the product ((xr)A)x is a matrix–vector multiply
that takes another ∼ m2 operations (as given above). The largest power
of m we saw was m3, so the whole procedure takes ∼ m3 operations .

When m = 1000, the first option (right to left) takes ∼ 106 operations, while
the second option (left to right) takes ∼ 109 operations. So definitely right to
left is better.

• Remark: More generally, if X is an m × n matrix and Y is an n × p
matrix, then computing XY involves computing the mp entries of XY ,
and each entry involves computing a dot product of two length-m vec-
tors (∼ m operations, actually ≈ 2m), so computing XY takes ∼ mnp
operations (actually ≈ 2mnp). This gives the square matrix–matrix and
square matrix–vector results given in the problem, and also tells us that
computing xr takes ∼ m2 operations, etc.

7

