MIT 18.06 Exam 1, Fall 2017 Johnson

Your name:

Recitation:

problem	score
1	/30
2	/20
3	/30
4	/20
total	/100

Problem 1 (30 points):

You are given three vectors $\vec{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 5 \end{pmatrix}$, and $\vec{v}_3 = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$. Your goal is to find a *linear combination of these three vectors* (that is, multiply them by some numbers x_1, x_2, x_3 and add them) to give the vector $\vec{b} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$.

- $\begin{pmatrix} -2\\ 12 \end{pmatrix}$.
- (a) Write the equation in matrix form.
- (b) Solve it to find the correct linear combination (x_1, x_2, x_3) of \vec{v}_1, \vec{v}_2 , and \vec{v}_3 .
- (c) Change one number in \vec{v}_3 to make the problem have no solution for most vectors \vec{b} , but give a new vector \vec{b}' for which there is still a solution. This new \vec{b}' is in the ______ space of the matrix_____.

(There are multiple correct answers for your new \vec{v}_3 and your new $\vec{b'}$.)

Problem 2 (20 points):

Suppose A is some 3×3 matrix. We will transform this into a *new* 3×3 matrix B by doing operations on the rows or columns of A as follows. For each part, (i) **explain how to express B as B=AE or B=EA (say which!) for some matrix E (write down E!)**. Also, (ii) say whether E is invertible (that is, whether the transformation is reversible). (You don't need to compute E^{-1} , just say whether the inverse exists!)

- (a) Swap the first and second rows of A.
- (b) Keep the first row the same, *then* add the second row to the third row, *then* replace the second row with the sum of the first and third rows.
- (c) Subtract the first *column* from the second and third columns.

Problem 3 (30 points):

Suppose you have a 3×3 matrix A satisfying $A = B^{-1}UL$ where

$$B = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -1 & 1 \\ -2 & 0 & -1 \end{pmatrix}, \quad U = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad L = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

- (a) The second column c of the matrix A^{-1} satisfies Ac = b for what right-hand side b?
- (b) The second column c of the matrix A^{-1} also satisfies ULc = d for what right-hand side d?
- (c) Compute the second column c of the matrix A^{-1} . (**Important:** you don't have to compute the inverse of any matrix!)

Problem 4 (20 points):

In class and homework, we showed that multiplying two arbitrary $m \times m$ matrices, doing Gaussian elimination, or inverting an $m \times m$ matrix requires $\sim m^3$ arithmetic operations (that is, roughly proportional to m^3 for large m). We found that adding matrices, multiplying an $m \times m$ matrix by a vector, or solving an $m \times m$ upper/lower triangular system of equations requires $\sim m^2$ operations.

Suppose that A is an $m \times m$ matrix, x is an m-component column vector (an $m \times 1$ matrix), and r is an m-component row vector (a $1 \times m$ matrix).

• You could compute the same result xrAx by doing the multiplications in different orders, for example x(r(Ax)) (multiplying terms from *right* to *left*) or ((xr)A)x (multiplying from *left to right*). Give the rough number of operations (say whether proportional to $\sim m, \sim m^2, \sim m^3$, or $\sim m^4$) for these two different orders (right to left and left to right). Which one is the fastest for m = 1000?