
MIT 18.06 Exam 2 Solutions, Fall 2017
Johnson

Problem 1 (40 points):

The complete solution to Ax = b is x =


1
0
1
0

+ α1


1
1
−1
0

+ α2


1
0
1
1

 for

all possible scalars α1 and α2.

(a) A is an m× n matrix of rank r. Describe all possible values of m, n, and
r.

(b) If b =

 1
2
1

, give a possible matrix A. (Look carefuly at x: can you

identify likely free and pivot columns of A from how we usually construct
the particular and special solutions?)

(c) Look carefully at x, and write down the matrix P that performs orthogonal
projection onto N(A). (Not much calculation should be needed!)

Solution:
(a) For the matrix multiplication Ax to make sense, it must be that A has

4 columns, i.e. that n = 4 . The vectors sitting after α1 and α2 must
span the nullspace; as they are nonzero and not scalar multiples of one
another, they are linearly independent, so form a basis for the nullspace.
The nullspace therefore has dimension 2. By the rank nullity theorem, we
therefore have that r + 2 = 4, so r = 2 . We always have to have m ≥ r,
so we must have m ≥ 2 . To see that this is all that is required of m,
consider the rowspace of C(AT ) of A, and let b = (b1, b2) be any nonzero
vector of length 2 (we can’t have b = 0, because otherwise the full solution
would include 0, and ours doesn’t - so there’s also a condition onb lurking
around that we didn’t ask you about). As the vector (1, 0, 1, 0) is not
in N(A), it cannot be orthogonal to all vectors in the rowspace C(AT ),
because N(A) is the orthogonal complement of C(AT ) and doesn’t contain
(1, 0, 1, 0). We can therefore find a basis {v, w} for C(AT ) = N(A)⊥ such
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that vT (1, 0, 1, 0) = b1 and wT (1, 0, 1, 0) = b2, because (b1, b2) 6= 0. Then
the 2× 4 matrix A with first row v and second row w does the trick, so m
as small as 2 is possible. Appending zero rows/entries to A and b shows
that any m ≥ 2 is also achievable, so m ≥ 2 is exactly what’s required of
m.

(b) By looking at x, we can first see that the first and third columns of A need
to add up to (1,2,1). To make sure that our matrix has rank 2, we should
take two linearly independent vectors that do that, e.g. (1,1,1) and (0, 1,
0). To make sure that the two nullspace vectors (1, 1, -1, 0) and (1, 0, 1,
1) are in the nullspace (which is all we need to arrange, because the rank
is 2 in this case, so the nullspace is 2-dimesional and hence is exactly the
span of these two linearly independent vectors like it’s supposed to be),
we then need to make (1) the second column be the third minus the first,
i.e. the second column should be (-1, 0, -1) and (2) the last column should
be -first + -third, i.e. (-1, -2, -1). This gives the matrix

A =

1 −1 0 −1
1 0 1 −2
1 −1 0 −1

 .

It’s then easy to check that this matrix works.

Of course, there are many possible solutions here, but the key thing is
to check that both the particular solution and the nullspace vectors work.

(c) The vectors sitting after the α’s are not only a basis for the nullspace, but
they are orthogonal, so there are an orthogonal basis for the nullspace!
Call the first one v1 = (1, 1,−1, 0) and the second on v2 = (1, 0, 1, 1).
Then from class/homework we can write down the projection:

P =
v1v

T
1

vT1 v1
+
v2v

T
2

vT2 v2
=

1

3


1 1 −1 0
1 1 −1 0
−1 −1 1 0
0 0 0 0

+
1

3


1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1



=
1

3


2 1 0 1
1 1 −1 0
0 −1 2 1
1 0 1 1
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Problem 2 (30 points):
(a) Give a possible 4×3 matrix A with three different, nonzero columns such

that blindly applying Gram–Schmidt to the columns of A will lead you to
divide by zero at some point.

(b) The reason Gram–Schmidt didn’t work is that your A does not have
.

(c) To find an orthonormal basis for C(A), you should instead apply Gram–Schmidt
to what matrix (for your A)?

Solution:
(a) As we’ll say in the next part, any A that doesn’t have full column rank

will do the trick. So taking any nonzero vector for our first column and
scaling it in different nonzero ways will produce an answer, for example:

1 2 3
1 2 3
1 2 3
1 2 3

 .

This A is rank 1 (the smallest possible rank since A was required to be
nonzero). Alternatively, we could give a rank 2 example. Just take any
two linearly independent first two columns, and (for example) their sum
as the third column: 

1 2 3
1 2 3
1 2 3
1 1 2

 .

(b) The reason Gram–Schmidt didn’t work is that your A does not have
full column rank (i.e. columns are not linearly independent).

(c) We just need to throw out enough columns that we’re left with a basis for
the original column space. In our first example (the rank 1 example) the
column space is visibly one-dimensional (the simplest way you can solve
this problem), and so we can keep just the first column:

1
1
1
1

 .
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In the second example (the rank 2 example), we should keep the first two
columns (actually, any two of the columns will work!), giving

1 2
1 2
1 2
1 1

 .
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Problem 3 (30 points):
Given two m×n matrices A and B, and two right-hand sides b, c ∈ Rm, suppose
that we want to minimize

f(x) = ‖b−Ax‖2 + ‖c−Bx‖2

over all x ∈ Rn, i.e. we want to minimize the sum of two least-squares fitting
errors.

(a) ‖b‖2 + ‖c‖2 can be written as the length squared ‖w‖2 of a single vector
w. What is w?

(b) Write down a matrix equation Cx̂ = d whose solution x̂ is the minimum
of f(x). (Give explicit formulas for C and d in terms of A,B, b, c.) Hint:
your answer from the previous part should give you an idea to convert this
into a “normal” least-squares problem.

Solution:
(a) Lengths squared are just the sum of squares of the coordinates, so a natural

answer is just to append the vector c onto the vector b:

w =

(
b
c

)
(block matrix notation, so the above w is in R2m).

Of course, there are other possible solutions here. You could add rows
of zeros to w, or re-order the rows (or in fact multiply it by any orthogo-
nal matrix), but all of these are unnecessarily complicated.

Some students instead proposed a vector w ∈ Rm with entries wi =√
b2i + c2i . This indeed has the same norm, but it is not at all useful

in the second part of the question.

(b) Let’s start by rewriting f(x). We have, taking part (1) as motivation,

f(x) = ‖b−Ax‖2 + ‖c−Bx‖2 =

∥∥∥∥(bc
)
−
(
Ax
Bx

)∥∥∥∥2 =

∥∥∥∥(bc
)
−
(
A
B

)
x

∥∥∥∥2 .
In particular, minimizing f(x) is then just exactly a usual least squares
problem, but for the matrix equation(

A
B

)
x =

(
b
c

)
.
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So, x̂ minimizes f(x) if and only if it satisfies the normal equations for
this least squares problem, which reads(

A
B

)T (
A
B

)
x̂ =

(
A
B

)T (
b
c

)
.

So, taking

d =

(
A
B

)T (
b
c

)
= AT b+BT c

and

C =

(
A
B

)T (
A
B

)
= ATA+BTB ,

we have our answer. Note that
(
A
B

)T

=
(
AT BT

)
, as should be

apparent from the definition of transposition.
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