MIT 18.06 Exam 2, Fall 2017
 Johnson

Your name:

Recitation:

problem	score
1	$/ 40$
2	$/ 30$
3	$/ 30$
total	$/ 100$

Problem 1 (40 points):

The complete solution to $A x=b$ is $x=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\alpha_{1}\left(\begin{array}{c}1 \\ 1 \\ -1 \\ 0\end{array}\right)+\alpha_{2}\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 1\end{array}\right)$ for all possible scalars α_{1} and α_{2}.
(a) A is an $m \times n$ matrix of rank r. Describe all possible values of m, n, and r.
(b) If $b=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$, give a possible matrix A. (Look carefuly at x : can you identify likely free and pivot columns of A from how we usually construct the particular and special solutions?)
(c) Look carefully at x, and write down the matrix P that performs orthogonal projection onto $N(A)$. (Not much calculation should be needed!)
(blank page for your work if you need it)

Problem 2 (30 points):

(a) Give a possible 4×3 matrix A with three different, nonzero columns such that blindly applying Gram-Schmidt to the columns of A will lead you to divide by zero at some point.
(b) The reason Gram-Schmidt didn't work is that your A does not have
(c) To find an orthonormal basis for $C(A)$, you should instead apply Gram-Schmidt to what matrix (for your A)?
(blank page for your work if you need it)

Problem 3 (30 points):

Given two $m \times n$ matrices A and B, and two right-hand sides $b, c \in \mathbb{R}^{m}$, suppose that we want to minimize

$$
f(x)=\|b-A x\|^{2}+\|c-B x\|^{2}
$$

over all $x \in \mathbb{R}^{n}$, i.e. we want to minimize the sum of two least-squares fitting errors.
(a) $\|b\|^{2}+\|c\|^{2}$ can be written as the length squared $\|w\|^{2}$ of a single vector w. What is w ?
(b) Write down a matrix equation $C \hat{x}=d$ whose solution \hat{x} is the minimum of $f(x)$. (Give explicit formulas for C and d in terms of A, B, b, c.) Hint: your answer from the previous part should give you an idea to convert this into a "normal" least-squares problem.
(blank page for your work if you need it)

