MIT 18.06 Exam 2, Fall 2017 Johnson

Your name:

Recitation:

problem	score
1	/40
2	/30
3	/30
total	/100

Problem 1 (40 points):

The complete solution to Ax = b is $x = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 1\\1\\-1\\0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 1\\0\\1\\1 \end{pmatrix}$ for all possible scalars α_1 and α_2 .

an possible scalars α_1 and α_2 .

- (a) A is an $m \times n$ matrix of rank r. Describe all possible values of m, n, and r.
- (b) If $b = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, give a possible matrix A. (Look carefully at x: can you identify likely free and pivot columns of A from how we usually construct the particular and special solutions?)
- (c) Look carefully at x, and write down the matrix P that performs orthogonal projection onto N(A). (Not much calculation should be needed!)

(blank page for your work if you need it)

Problem 2 (30 points):

- (a) Give a possible 4×3 matrix A with three *different, nonzero* columns such that blindly applying Gram–Schmidt to the columns of A will lead you to **divide by zero** at some point.
- (b) The reason Gram–Schmidt didn't work is that your A does not have
- (c) To find an orthonormal basis for C(A), you should instead apply Gram–Schmidt to what matrix (for your A)?

(blank page for your work if you need it)

Problem 3 (30 points):

Given two $m \times n$ matrices A and B, and two right-hand sides $b, c \in \mathbb{R}^m$, suppose that we want to minimize

$$f(x) = \|b - Ax\|^2 + \|c - Bx\|^2$$

over all $x \in \mathbb{R}^n$, i.e. we want to minimize the sum of two least-squares fitting errors.

- (a) $||b||^2 + ||c||^2$ can be written as the length squared $||w||^2$ of a single vector w. What is w?
- (b) Write down a matrix equation $C\hat{x} = d$ whose solution \hat{x} is the minimum of f(x). (Give explicit formulas for C and d in terms of A, B, b, c.) Hint: your answer from the previous part should give you an idea to convert this into a "normal" least-squares problem.

(blank page for your work if you need it)