MIT 18.06 Exam 3, Fall 2017
 Johnson

Your name:

Recitation:

problem	score
1	$/ 30$
2	$/ 30$
3	$/ 40$
total	$/ 100$

Problem 1 (30 points):

(a) Give a matrix A where $\operatorname{det}(A-\lambda I)=0$ has exactly two roots $\lambda=1$ and $\lambda=3$, but the trace of A does not equal 4 .
(b) The eigenvalues of $\left(A+A^{T}\right)^{-1}$ for any real, square matrix A (assuming $A+A^{T}$ is invertible) must be \qquad .
(c) If $A=Q^{T} \Lambda Q$ for a diagonal matrix Λ and a real orthogonal matrix Q, then the eigenvectors of A are the \qquad of Q.
(d) If A is real, and $e^{A t}\binom{2}{4}=e^{(3+4 i) t}\binom{1+i}{2-2 i}+e^{\alpha t}\binom{\beta}{\gamma}$, then the $(t-$ independent) scalars α, β, γ are \qquad ?
(e) If A is a 4×4 matrix with $\operatorname{det} A=5$, then $\frac{d}{d t} \operatorname{det}\left(A^{T} A t\right)=$
(blank page for your work if you need it)

Problem 2 (30 points):

You are given a matrix $A=e^{-B^{T} B}$ for some real 3×3 matrix B. The nullspace $N(B)$ is spanned by $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$.
(a) Circle any of the following vectors that cannot possibly be eigenvectors of A, and put a rectangle around any vectors that must be eigenvectors of A :

$$
\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

(b) $A^{n} x$ for some $x \neq 0$ may do what for large n (circle all possibilities)? Oscillate / decay / diverge / go to a nonzero constant vector.
(c) For $x=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, give a good approximation for $A^{n} x$ for a very large n.
(blank page for your work if you need it)

Problem 3 (40 points):

The vector $x(t)$ satisfies the ODE

$$
(I+A) \frac{d x}{d t}=\left(A^{2}-I\right) x
$$

for the diagonalizable matrix $A=\left(\begin{array}{ccc}0.9 & 0.0 & 0.3 \\ 0.0 & 0.8 & 0.4 \\ 0.1 & 0.2 & 0.3\end{array}\right)$. If we square this, we get $A^{2}=\left(\begin{array}{ccc}0.84 & 0.06 & 0.36 \\ 0.04 & 0.72 & 0.44 \\ 0.12 & 0.22 & 0.2\end{array}\right)$.
(a) If A has an eigenvalue λ and an eigenvector v, give a nonzero solution $x(t)$ satisfying the ODE above, in terms of λ, v, and t.
(b) Both A and A^{2} are \qquad matrices. By inspection of A^{2}, what can you say (with no arithmetic! don't calculate λ !) about the magnitudes $|\lambda|$ of the three eigenvalues of A^{2} ? What does this tell you about the magnitudes $|\lambda|$ of the eigenvalues of A ?
(c) Give the eigenvalue λ of A with the biggest magnitude. A corresponding eigenvector is $\left(\begin{array}{l}\alpha \\ 2 \\ 1\end{array}\right)$ for what α ?
(d) For an initial conditions $x(0)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, circle what would you expect the solutions $x(t)$ to do for large t : Oscillate / decay / diverge / go to a nonzero constant vector? Give a good approximation for $x(t)$ for a large t - if you can't figure it out exactly, at least give a vector that $x(t)$ is nearly parallel to.
(blank page for your work if you need it)

