MIT 18.06 Final Exam, Fall 2017
 Johnson

Your name:

Recitation:

problem	score
1	$/ 15$
2	$/ 15$
3	$/ 15$
4	$/ 15$
5	$/ 15$
6	$/ 15$
7	$/ 10$
total	$/ 100$

Problem 1 (15 points):

A matrix $A=L U$ has the LU factors

$$
L=\left(\begin{array}{cccc}
1 & & & \\
-2 & 1 & & \\
0 & -2 & 1 & \\
-1 & -1 & -2 & 1
\end{array}\right), U=\left(\begin{array}{cccc}
1 & -1 & -2 & 0 \\
& 1 & 0 & -2 \\
& & 1 & 0 \\
& & & 1
\end{array}\right)
$$

(a) If $b=\left(\begin{array}{c}-1 \\ 2 \\ 2 \\ -4\end{array}\right)$, what is $x=A^{-1} b$?
(b) Assuming you solved the previous part efficiently, roughly how much more arithmetic operations would be required for the same approach if the matrices were 8×8 instead of 4×4 ? It should be about \qquad times more.
(c) If you form a new 4×5 matrix $B=\left(\begin{array}{ll}A & b\end{array}\right)$ by appending the vector b (from above) as an extra column after A, and perform the same elimination steps as were used to get the LU factors above, what upper-triangular matrix would you obtain? (Hint: if you did part (a) properly, this part can be done with no arithmetic.)
(blank page for your work if you need it)

Problem 2 (15 points):

You are given the recurrence relation

$$
\left(2 I+B^{T} B\right) x_{n+1}=\left(2 I-B^{T} B\right) x_{n}
$$

where B is a real 5×3 matrix. We start with a vector x_{0} and compute x_{1}, x_{2}, \ldots
(a) $x_{n}=A^{n} x_{0}$ for some matrix A (independent of x_{0}). What is A ?
(b) If λ is an eigenvalue of $B^{T} B$, give an eigenvalue of A.
(c) Circle all possible behaviors of x_{n} for large n, given the information above: decaying to zero, oscillating but not growing or decaying in length, going to a nonzero constant vector, or growing longer and longer. Explain your answers by giving some property (or properties) that must be true of the eigenvalues of A.
(d) If $x_{1}=0$ for a nonzero x_{0}, give one of the singular values (σ) of B.
(blank page for your work if you need it)

Problem 3 (15 points):

The distance between a point b and a plane in \mathbb{R}^{3} is defined as the minimum distance $\|b-y\|$ between b and any point y in the plane.
(a) Suppose the points y in the plane are of the form $y=c+\alpha a_{1}+\beta a_{2}$ for all real numbers α and β, given vectors $c, a_{1}, a_{2} \in \mathbb{R}^{3}$ that define the plane (a_{1} and a_{2} are linearly independent). Under what condition(s) on c, a_{1}, a_{2} is the plane a subspace of \mathbb{R}^{3} ?
(b) Write down a 2×2 system of equations, in terms of the vectors a_{1}, a_{2}, c, b (or matrices defined from these vectors) whose solution gives the $\binom{\alpha}{\beta}$ for the closest point y in the plane to b.
(c) For this closest point $y, b-y$ is in what subspace of the matrix $A=$ $\left(a_{1} a_{2}\right)$? What is the dimension of this subspace?
(d) For $a_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), a_{2}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, find a vector d such that the distance between any point b and the plane is equal to $\left|d^{T}(b-c)\right|$. What subspace of A contains d ?
(blank page for your work if you need it)

Problem 4 (15 points):
You are given the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & -1 & 1 \\
2 & 1 & -3 & 4 \\
1 & -2 & 1 & -4
\end{array}\right)
$$

(a) Find the complete solution x (i.e. all solutions) to $A x=b$ for $b=$ $\left(\begin{array}{c}3 \\ 9 \\ -4\end{array}\right)$.
(b) $A^{T} y=d$ is solvable if and only if $d^{T} z=0$ for some z. Give such a vector z.
(blank page for your work if you need it)

Problem 5 (15 points):

QR factorization of the matrix A (e.g. via Gram-Schmidt) yields $A=Q R$, where

$$
Q=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\
0 & -\frac{1}{\sqrt{2}} & \frac{1}{2}
\end{array}\right), R=\left(\begin{array}{ccc}
1 & 2 & 0 \\
& 1 & 2 \\
& & 2
\end{array}\right)
$$

(a) Which columns of A were orthogonal to begin with, if any?
(b) What is the orthogonal projection p of the vector $b=\left(\begin{array}{l}4 \\ 0 \\ 0 \\ 0\end{array}\right)$ onto $C(A)$?
(c) If we are minimizing $\|A x-b\|$ (i.e. solving the least-square problem) for $b=\left(\begin{array}{l}4 \\ 0 \\ 0 \\ 0\end{array}\right)$, you should be able to quickly get an upper-triangular system of equations $U \hat{x}=c$ for the least-square solution \hat{x}. What are the upper-triangular matrix U and the right-hand-side vector c ?
(blank page for your work if you need it)

Problem 6 (15 points):

You are given the nonsymmetric, diagonalizable matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 3 \\
1 & -3 & -2 \\
-1 & 0 & -3
\end{array}\right)
$$

and we want to understand the solutions of the ODE

$$
\frac{d x}{d t}=A x
$$

for some initial condition $x(0)$.
(a) Show (by any test you want, e.g. the pivot test) that the matrix $A+A^{H}=$ $\left(\begin{array}{ccc}-2 & 2 & 2 \\ 2 & -6 & -2 \\ 2 & -2 & -6\end{array}\right)$ is negative definite.
(b) If $A v=\lambda v$ is an eigensolution of A (v and λ may be complex), look at $v^{H}\left(A+A^{H}\right) v$ and use the fact that $A+A^{H}$ is negative definite to show that the real part of λ must be negative.
(c) What can you conclude from the previous parts about the solutions $x(t)$ as $t \rightarrow \infty$?
(d) If $A+A^{H}$ is negative definite (so that A 's eigenvalues have negative real parts), but A is defective, does your answer to the previous part about $x(\infty)$ change? Why or why not?
(blank page for your work if you need it)

Problem 7 (10 points):

The following parts can be answered independently (and refer to different matrices). Little or no calculation should be needed.
(a) If $C(B)$ is a subspace of $N(A)$, then either (circle one) $A B$ or $B A$ must be simply \qquad _.
(b) If A is a real-symmetric 3×3 matrix with eigenvalues $\lambda_{1}=1, \lambda_{2}=2$, $\lambda_{3}=3$ and corresponding real eigenvectors v_{1}, v_{2}, v_{3}, then an explicit equation for $A^{-1} b$ in terms of sums/products involving these eigenvectors and b, with no matrix inverses, is:
(c) If A is a 3×3 non-singular real matrix with singular values $\sigma_{1}, \sigma_{2}, \sigma_{3}$, then give formulas in terms of $\sigma_{1}, \sigma_{2}, \sigma_{3}$ for $\operatorname{det}\left(A^{T} A\right)=$ \qquad and $|\operatorname{det}(A)|=$ \qquad .
(d) If $N(A)$ is spanned by the vector $v \neq 0$, then projection matrices onto two of the fundamental subspaces of A are:
and
(write down two matrices and indicate which subspaces they project onto).
(e) If A is similar to the matrix $\left(\begin{array}{ccc}3 & 6 & 2 \\ & 17 & 3 \\ & & 4\end{array}\right)$, then the eigenvalues of A are: \qquad .
(blank page for your work if you need it)

