MIT 18.06 Final Exam, Fall 2017 Johnson

Your name:

Recitation:

problem	score
1	/15
2	/15
3	/15
4	/15
5	/15
6	/15
7	/10
total	/100

Problem 1 (15 points):

A matrix A = LU has the LU factors

$$L = \begin{pmatrix} 1 & & \\ -2 & 1 & & \\ 0 & -2 & 1 & \\ -1 & -1 & -2 & 1 \end{pmatrix}, U = \begin{pmatrix} 1 & -1 & -2 & 0 \\ & 1 & 0 & -2 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix}$$
(a) If $b = \begin{pmatrix} -1 \\ 2 \\ 2 \\ -4 \end{pmatrix}$, what is $x = A^{-1}b$?

- (b) Assuming you solved the previous part efficiently, roughly how much more arithmetic operations would be required for the same approach if the matrices were 8×8 instead of 4×4 ? It should be about _____ times more.
- (c) If you form a new 4×5 matrix $B = \begin{pmatrix} A & b \end{pmatrix}$ by appending the vector b (from above) as an extra column after A, and perform the *same* elimination steps as were used to get the LU factors above, what upper-triangular matrix would you obtain? (Hint: if you did part (a) properly, this part can be done with *no arithmetic*.)

Problem 2 (15 points):

You are given the recurrence relation

$$(2I + B^T B)x_{n+1} = (2I - B^T B)x_n$$

where B is a real 5×3 matrix. We start with a vector x_0 and compute x_1, x_2, \ldots

- (a) $x_n = A^n x_0$ for some matrix A (independent of x_0). What is A?
- (b) If λ is an eigenvalue of $B^T B$, give an eigenvalue of A.
- (c) **Circle all possible** behaviors of x_n for large n, given the information above: **decaying** to zero, **oscillating** but not growing or decaying in length, going to a **nonzero constant** vector, or **growing** longer and longer. Explain your answers by giving some property (or properties) that must be true of the eigenvalues of A.
- (d) If $x_1 = 0$ for a nonzero x_0 , give one of the singular values (σ) of B.

Problem 3 (15 points):

The distance between a point b and a plane in \mathbb{R}^3 is defined as the *minimum* distance ||b - y|| between b and *any* point y in the plane.

- (a) Suppose the points y in the plane are of the form $y = c + \alpha a_1 + \beta a_2$ for all real numbers α and β , given vectors $c, a_1, a_2 \in \mathbb{R}^3$ that define the plane $(a_1 and a_2 are linearly independent)$. Under what condition(s) on c, a_1, a_2 is the plane a subspace of \mathbb{R}^3 ?
- (b) Write down a 2×2 system of equations, in terms of the vectors a_1, a_2, c, b (or matrices defined from these vectors) whose solution gives the $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ for the *closest* point y in the plane to b.
- (c) For this closest point y, b y is in what subspace of the matrix $A = (a_1a_2)$? What is the **dimension** of this subspace?
- (d) For $a_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, find a vector d such that the distance

between any point b and the plane is equal to $|d^T(b-c)|$. What subspace of A contains d?

Problem 4 (15 points):

You are given the following matrix:

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 2 & 1 & -3 & 4 \\ 1 & -2 & 1 & -4 \end{array}\right)$$

- (a) Find the **complete solution** x (i.e. all solutions) to Ax = b for $b = \begin{pmatrix} 3 \\ 9 \\ -4 \end{pmatrix}$.
- (b) $A^T y = d$ is solvable if and only if $d^T z = 0$ for some z. Give such a vector z.

Problem 5 (15 points):

QR factorization of the matrix A (e.g. via Gram–Schmidt) yields A = QR, where (1 0 1)

$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{2} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}, R = \begin{pmatrix} 1 & 2 & 0 \\ & 1 & 2 \\ & & 2 \end{pmatrix}.$$

(a) Which columns of A were **orthogonal** to begin with, if any?

(b) What is the orthogonal **projection**
$$p$$
 of the vector $b = \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ onto $C(A)$?

(c) If we are minimizing ||Ax - b|| (i.e. solving the least-square problem) for

 $b = \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, you should be able to *quickly* get an upper-triangular

system of equations $U\hat{x} = c$ for the least-square solution \hat{x} . What are the upper-triangular matrix U and the right-hand-side vector c?

Problem 6 (15 points):

You are given the nonsymmetric, diagonalizable matrix

$$A = \left(\begin{array}{rrrr} -1 & 1 & 3\\ 1 & -3 & -2\\ -1 & 0 & -3 \end{array}\right).$$

and we want to understand the solutions of the ODE

$$\frac{dx}{dt} = Ax$$

for some initial condition x(0).

- (a) Show (by any test you want, e.g. the pivot test) that the matrix $A + A^H = \begin{pmatrix} -2 & 2 & 2 \\ 2 & -6 & -2 \\ 2 & -2 & -6 \end{pmatrix}$ is **negative definite**.
- (b) If $Av = \lambda v$ is an eigensolution of A (v and λ may be complex), look at $v^H (A + A^H) v$ and use the fact that $A + A^H$ is negative definite to **show** that the **real part** of λ must be **negative**.
- (c) What can you conclude from the previous parts about the solutions x(t) as $t \to \infty$?
- (d) If $A + A^H$ is negative definite (so that A's eigenvalues have negative real parts), but A is **defective**, does your answer to the previous part about $x(\infty)$ change? Why or why not?

Problem 7 (10 points):

The following parts can be **answered independently** (and refer to **different matrices**). Little or no calculation should be needed.

- (a) If C(B) is a subspace of N(A), then either (**circle one**) AB or BA must be simply _____.
- (b) If A is a real-symmetric 3×3 matrix with eigenvalues $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$ and corresponding real eigenvectors v_1, v_2, v_3 , then an explicit equation for $A^{-1}b$ in terms of sums/products involving these eigenvectors and b, with no matrix inverses, is:
- (c) If A is a 3 × 3 non-singular real matrix with singular values $\sigma_1, \sigma_2, \sigma_3$, then give formulas in terms of $\sigma_1, \sigma_2, \sigma_3$ for det $(A^T A) =$ ______and $|\det(A)| =$ ______.
- (d) If N(A) is spanned by the vector $v \neq 0$, then projection matrices onto two of the fundamental subspaces of A are:

	(write down two matrices and		nd te wi	thich subspaces they project onto).
(e)				$\begin{pmatrix} 2\\ 3\\ 4 \end{pmatrix}$, then the eigenvalues of A
	are:	1		± /