Introduction to Julia:

Why are we doing this to you?
(Fall 2017)

Steven G. Johnson, MIT Applied Math

MIT classes 18.06, 18.303, 18.330, 18.08[56],
18.335, 18.337/, ...

What language for teaching
scientific computing?

For the most part, these are not hard-core programming courses,
and we only need little “throw-away” scripts and toy numerical experiments.

Almost any high-level, interactive (dynamic) language
with easy facilities for linear algebra (Ax=b, Ax=Ax),

plotting, mathematical functions, and working with
large arrays of data would be fine.

And there are lots of choices...

Lots of choices for interactive math...

euler mupad matrix
gauss Scl

< yorick

ldl l ab plus
sage octave!

igor

alilSﬂS] gl

scilab pickle pI’O emuS e WAVE r
le v1ew labStala

@ speakeasy

hematica

axiomf reematgl'eﬂmathcad lugh scirubymagma
[image: Viral Shah]

Just pick the most popular?
Matlab or Python or R?

We feel quilty pushing a language on
you that we
are starting to abandon ourselves.

Traditional HL computing languages
hit a performance wall in “real” work
... eventually force you to C, Cython, ...

A new programming Ianguage?

Viral Shah

Jeff Bezanson

julialang.org

Stfan Karbinski
_ _ [begun 2009, “0.1” in 2013, ~40k commits,
[30+ developers with 100+ commits, “0.6” release in June 2017]

1000+ external packages, 4™ JuliaCon in 2017]

As high-level and interactive as Matlab or Python+IPython,
as general-purpose as Python,
as productive for technical work as Matlab or Python+SciPy,
but as fast as C.

Performance on synthetic benchmarks

[loops, recursion, etc., implemented in most straightforward style]

104
O
O
103 s ®
8 b
$ enchmark
0 ® rand_mat_mul
10 8 © rand_mat_stat
O 0) o e
pi_sum
o o @ printfd
101 o ® 8 8 ® mandel
O @ quicksort
° ® o) B ® o @ fib
8 ® parse_int
100 8 8 0 9] A

Julia Fortran Go JavaScript Python Mathematica R Matlab Octave

(normalized so that C speed = 1)

Special Functionsin Julia

Special functions s(x): classic case that cannot be vectorized well
... switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries,
but some are written in pure Julia code.

Pure Julia erfinv(x) [= erf1(x)]
3—4x faster than Matlab’s and 2—3x faster than SciPy’s (Fortran Cephes).

Pure Julia polygamma(m, z) [= (m+1)th derivative of the In I function]
~ 2x faster than SciPy’s (C/Fortran) for real z
... and unlike SciPy’s, same code supports complex argument z

Ill

Julia code can actually be faster than typical “optimized”
C/Fortran code, by using techniques
[metaprogramming/codegen generation] that are
hard in a low-level language.

speed (mtlops)

14000
13000
12000
11000
10000
9000
8000
7000
6000
5000
4000

3000 /
2000}/)
1000”87

Pure-Julia FFT performance

double-precision complex, 1d transforms

powers of two

from manual SIMD)

(FFTW, MKL:
“unfair” factor of ~2

m-----a intel-mkl-dfti in-place
z—=a intel-mkl-dfti out-of-place
o—e fftw3 out-of-place

e-----e fftw3 in-place

0—o fftw3-no-simd out-of-place
o-----0 fftw3-no-simd in-place

dfftpack
emayer

O-----80 bloodworth
+——+ Cross

cwplib
= --m esrfft

already comparable to FFTPACK

[probably some tweaks to
inlining will make it better]

FFTW 1.0-like code generation
+ recursion in Julia
~ 1/3 lines of code compared to
FFTPACK, more functionality

Generating Vandermonde matrices

givenx = [a4, O, ...], generate:

n—17

1 ¥
1 « 2
V = 1 « 3

1 o,

(

2
O.‘l
2
O‘Z

2
v,

M

O.‘l
n—1
(]2

n—1
8% 3

n—1
Qi

—

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Writing fast code “in” Python or Matlab = mining the standard library
for pre-written functions (implemented in C or Fortran).

If the problem doesn’t “vectorize” into built-in functions,
if you have to write your own inner loops ... sucks for you.

Julia (type-generic code):

function vander{T}(x::AbstractVector{T},

end

Generating Vandermonde matrices

givenx = [a4, O, ...], generate:

1
1
1

1

2
¥ ¥ 1
2
(Y9 s
2
vy Oy
2

m

m = length(x)
V = Array(T, m, n)

for j =

1:m

(—1
oy

=il
vy

n—1
CI;;

n—1
Qo

—

V[j,1] = one(x[j1)

end
for 1 =
for

end
end
return V

2:n
j=1:m
V[3,1]

x[31 * V[j,1-1]

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

n=length(x))

10°

104}

103 H

102}

101

NumPy time / Julia time

10°

107 .
10t 102 103 10*
matrix size n

NumPy time / Julia time

10°

Generating Vandermonde matrices

1071

L | T T T LA S e S i |

function vander{T}(x: :AbstractVector{T}, n=length(x))
m = length(x)

V = Array(T, m, n) note: works for any container

for j = 1:m e ,
V[j,1] = one(x[j]) ©fany type with “*" operation

end ... performance # inflexibility

for 1 = 2:n
for j = 1:m E

V[J,l:l = X[J:l * V[J’l_l:l :

end

end

return V .

10t

1072 10° 104
matrix size n

But | don’t “need” performance!

For lots of problems, especially “toy” problems in courses,
Matlab/Python performance is good enough.

But if use those languages for all of your “easy” problems,
then you won’t be prepared to switch when you hit a hard
problem. When you need performance, it is too late.

You don’t want to learn a new language at the same time
that you are solving your first truly difficult computational

problem.

Just vectorize your code?

= rely on mature external libraries,
operating on large blocks of data,
for performance-critical code

Good advice! But...

e Someone hasto writethose libraries.

e Eventually that person will be you.
— some problems areimpossible or
just very awkward to vectorize.

But everyone else is using
Matlab/Python/R/...

Julia is still a young, niche language. That
imposes real costs — lack of familiarity,
rough edges, continual language changes.
These are real obstacles.

But it also gives you advantages that
Matlab/Python users don’t have.

But | lose access to all the libraries
available for other languages?

Very easy to call C/Fortran libraries from
Julia, and also to call Python...

Julia leverages Python...

Directly call Python libraries (PyCall package),
e.g. to plot with Matplotlib (PyPlot package), and also...

-
jupyter
S’

[jupyter.org]

via IPython/Jupyter:

Modern multimedia
interactive notebooks
mixing code, results,
graphics, rich text,
equations, interaction

“lulia”

goto live lJulia notebook demo...

Go to juliabox.org for install-free [Julia on the Amazon cloud

See also julialang.org for more tutorial materials...

