
Introduction	to	Julia:
Why	are	we	doing	this	to	you?

(Fall	2017)

Steven	G.	Johnson,	MIT	Applied	Math

MIT	classes	18.06,	18.303,	18.330,	18.08[56],
18.335,	18.337,	…



What	language	for	teaching
scientific	computing?

For	the	most	part,	these	are	not	hard-core	programming	courses,
and	we	only	need	 little	“throw-away”	scripts	and	toy	numerical	experiments.

Almost	any	high-level,	interactive	(dynamic)	language	
with	easy	facilities	for	linear	algebra	(Ax=b,	Ax=λx),	
plotting,	mathematical functions,	and	working	with	
large	arrays of	data	would	be	fine.

And	there	are	lots	of	choices…



Lots	of	choices	for	interactive	math…

[	image:	Viral	Shah	]



Just	pick	the	most	popular?
Matlab or	Python or	R?

We	feel	guilty	pushing	a	language	on	
you	that	we

are	starting	to	abandon	ourselves.

Traditional	HL	computing	languages
hit	a	performance	wall	in	“real”	work
…	eventually	force	you	to	C,	Cython,	…



A	new	programming	language?

julialang.org

[begun	2009,	“0.1”	in	2013,	~40k	commits,
“0.6”	release	 in	June	2017	]

Alan	Edelman
Jeff	Bezanson

Viral	Shah

Stefan	Karpinski

[	30+	developers	with	100+	commits,
1000+	external	packages,	4th JuliaCon in	2017	]

[	MIT	]

As	high-level	and	interactive	as	Matlab or	Python+IPython,
as	general-purpose	as	Python,

as	productive	for	technicalwork	as	Matlab or	Python+SciPy,
but	as	fast	as	C.



Performance	on	synthetic	benchmarks
[	loops,	recursion,	etc.,	implemented	 in	most	straightforward	style	]

(normalized	so	that	C	speed	=	1)



Special	Functions	in	Julia
Special	 functions	 s(x):	classic	 case	that	cannot	be	vectorized well

…	switch	between	 various	polynomials	 depending	 on	x

Many	of	Julia’s	special	functions	come	from	the	usual	C/Fortran	libraries,
but	some	are	written	in	pure	Julia	code.

Pure	Julia	erfinv(x)	 [	=	erf–1(x)	 ]
3–4× faster	than	Matlab’s and	2–3× faster	 than	SciPy’s (Fortran	Cephes).

Pure	Julia	polygamma(m,	z)	[	=	(m+1)th derivative	 of	the	ln Γ function	]
~	2× faster	 than	SciPy’s (C/Fortran)	 for	real	z

…	and	unlike	SciPy’s,	same code supports	 complex	argument	z

Julia	code	can	actually	be	faster than	typical	“optimized”
C/Fortran	code,	by	using	techniques	

[metaprogramming/codegen generation]	that	are
hard	in	a	low-level	language.



Pure-Julia	FFT	performance

2 4 8 16 32 64 128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

sp
ee

d 
(m

flo
ps

)

intel-mkl-dfti in-place
intel-mkl-dfti out-of-place
fftw3 out-of-place
fftw3 in-place
fftw3-no-simd out-of-place
fftw3-no-simd in-place
dfftpack
emayer
julia
bloodworth
cross
cwplib
esrfft

double-precision complex, 1d transforms
powers of two

already	comparable	to	FFTPACK

[	probably	some	tweaks	to
inlining will	make	 it	better	]

FFTW	1.0-like	code	generation
+	recursion	in	Julia

~	1/3	lines	 of	code	compared	to
FFTPACK,	more	functionality

(FFTW,	MKL:	
“unfair”	factor	of	~2	
from	manual	SIMD)



Generating	Vandermondematrices
given	x	=	[α1,	α2,	…],	generate: NumPy (numpy.vander):	 [follow	links]

Python	code	 …wraps	C	code	
… wraps	generated	C	code

type-generic	 at	high-level,	but
low	level	 limited	 to	small	 set	of	types.

Writing	fast	code	“in”	Python	or	Matlab =	mining	the	standard	library
for	pre-written	functions	(implemented	in	C	or	Fortran).

If	the	problem	doesn’t	“vectorize”	into	built-in	functions,
if	you	have	to	write	your	own	inner	loops	…	sucks for	you.



Generating	Vandermondematrices
given	x	=	[α1,	α2,	…],	generate: NumPy (numpy.vander): [follow	links]

Python	code	 …wraps	C	code	
… wraps	generated	C	code

type-generic	 at	high-level,	but
low	level	 limited	 to	small	 set	of	types.

function vander{T}(x::AbstractVector{T}, n=length(x))
m = length(x)
V = Array(T, m, n)
for j = 1:m

V[j,1] = one(x[j])
end
for i = 2:n

for j = 1:m
V[j,i] = x[j] * V[j,i-1]

end
end
return V

end

Julia	(type-generic	 code):



Generating	Vandermondematrices
function vander{T}(x::AbstractVector{T}, n=length(x))

m = length(x)
V = Array(T, m, n)
for j = 1:m

V[j,1] = one(x[j])
end
for i = 2:n

for j = 1:m
V[j,i] = x[j] * V[j,i-1]

end
end
return V

end

note:	works	for	any		container
of	any	type	with	“*”	operation
…	performance	≠	inflexibility



But	I	don’t	“need” performance!

For	lots	of	problems,	especially	“toy”	problems	in	courses,	
Matlab/Python	performance	is	good	enough.

But	if	use	those	languages	for	all	of	your	“easy”	problems,	
then	you	won’t	be	prepared	to	switch	when	you	hit	a	hard	
problem.		When	you	need performance,	it	is	too	late.

You	don’t want	to	learn	a	new	language	at	the	same	time
that	you	are	solving	your	first	truly	difficult	computational	
problem.



Just	vectorize your	code?
=	rely	on	mature	external	libraries,
operating	on	large	blocks	of	data,
for	performance-critical	code

Good	advice!		But…

•	Someone has	to	write	those	libraries.

•	Eventually	that	person	will	be	you.
— some	problems	are	impossible	or

just	very	awkward	to	vectorize.



But	everyone	else	is	using
Matlab/Python/R/…

Julia	is	still	a	young,	niche	language.		That	
imposes	real	costs	— lack	of	familiarity,	
rough edges,	continual	language	changes.		
These	are	real	obstacles.

But	it	also	gives	you	advantages	that	
Matlab/Python	users	don’t	have.



But	I	lose	access	to	all	the	libraries	
available	for	other	languages?

Very	easy	to	call	C/Fortran	libraries	from	
Julia,	and	also	to	call	Python…



[	jupyter.org ]

via	IPython/Jupyter:

Modern	multimedia
interactive	notebooks
mixing	code,	results,
graphics,	rich	text,	
equations,	interaction

“IJulia”

Julia	leverages	Python…
Directly	call	Python	libraries	(PyCall package),

e.g.	to	plot	with	Matplotlib (PyPlot package),	and	also…



goto live	IJulia notebook demo…

Go	to juliabox.org for	install-free	IJulia on	the	Amazon	cloud

See	also	julialang.org for	more	tutorial	materials…


