Introduction to Julia:
Why are we doing this to you?
(Fall 2017)

Steven G. Johnson, MIT Applied Math

MIT classes 18.06, 18.303, 18.330, 18.08[56],
18.335, 18.337, ...
What language for teaching scientific computing?

For the most part, these are not hard-core programming courses, and we only need little “throw-away” scripts and toy numerical experiments.

Almost any high-level, interactive (dynamic) language with easy facilities for linear algebra (Ax=b, Ax=λx), plotting, mathematical functions, and working with large arrays of data would be fine.

And there are lots of choices...
Lots of choices for interactive math...

[image: Viral Shah]
Just pick the most popular? *Matlab* or *Python* or *R*?

We feel guilty pushing a language on you that we are starting to abandon ourselves.

Traditional HL computing languages hit a performance wall in “real” work ... eventually force you to C, Cython, ...
A new programming language?

As high-level and interactive as Matlab or Python+IPython,

as general-purpose as Python,

as productive for technical work as Matlab or Python+SciPy,

but as fast as C.
Performance on synthetic benchmarks

[loops, recursion, etc., implemented in most straightforward style]

(normalized so that C speed = 1)
Special Functions in Julia

Special functions $s(x)$: classic case that cannot be vectorized well
... switch between various polynomials depending on x

Many of Julia’s special functions come from the usual C/Fortran libraries, but some are written in pure Julia code.

Pure Julia $\text{erfinv}(x) \quad [= \text{erf}^{-1}(x)]$
3–4× faster than Matlab’s and 2–3× faster than SciPy’s (Fortran Cephes).

Pure Julia $\text{polygamma}(m, z) \quad [= (m+1)^{th} \text{ derivative of the } \ln \Gamma \text{ function }]$
~ 2× faster than SciPy’s (C/Fortran) for real z
... and unlike SciPy’s, same code supports complex argument z

Julia code can actually be faster than typical “optimized” C/Fortran code, by using techniques [metaprogramming/codegen generation] that are hard in a low-level language.
Pure-Julia FFT performance

double-precision complex, 1d transforms
powers of two

(FFTW, MKL: “unfair” factor of ~2 from manual SIMD)

already comparable to FFTPACK

[probably some tweaks to inlining will make it better]

FFTW 1.0-like code generation
+ recursion in Julia

~ 1/3 lines of code compared to FFTPACK, more functionality
Generating Vandermonde matrices

given \(x = [\alpha_1, \alpha_2, \ldots] \), generate:

\[
V = \begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \ldots & \alpha_1^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \ldots & \alpha_2^{n-1} \\
1 & \alpha_3 & \alpha_3^2 & \ldots & \alpha_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_m & \alpha_m^2 & \ldots & \alpha_m^{n-1}
\end{bmatrix}
\]

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Writing fast code “in” Python or Matlab = mining the standard library
for pre-written functions (implemented in C or Fortran).

If the problem doesn’t “vectorize” into built-in functions,
if you have to write your own inner loops ... sucks for you.
Generating Vandermonde matrices

given \(x = [\alpha_1, \alpha_2, \ldots] \), generate:

\[
V = \begin{bmatrix}
1 & \alpha_1 & \alpha_1^2 & \cdots & \alpha_1^{n-1} \\
1 & \alpha_2 & \alpha_2^2 & \cdots & \alpha_2^{n-1} \\
1 & \alpha_3 & \alpha_3^2 & \cdots & \alpha_3^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_m & \alpha_m^2 & \cdots & \alpha_m^{n-1}
\end{bmatrix}
\]

NumPy (numpy.vander): [follow links]

Python code ...wraps C code
... wraps generated C code

type-generic at high-level, but
low level limited to small set of types.

Julia (type-generic code):

function vander{T}(x::AbstractVector{T}, n=length(x))
 m = length(x)
 V = Array(T, m, n)
 for j = 1:m
 V[j,1] = one(x[j])
 end
 for i = 2:n
 for j = 1:m
 V[j,i] = x[j] * V[j,i-1]
 end
 end
 return V
end
Generating Vandermonde matrices

```julia
function vander{T}(x::AbstractVector{T}, n=length(x))
    m = length(x)
    V = Array{T, 2}(m, n)
    for j = 1:m
        V[j,1] = one(T)(x[j])
    end
    for i = 2:n
        for j = 1:m
            V[j,i] = x[j] * V[j,i-1]
        end
    end
    return V
end
```

Note: works for any container of any type with "*" operation... performance ≠ inflexibility.
But I don’t “need” performance!

For lots of problems, especially “toy” problems in courses, Matlab/Python performance is good enough.

But if use those languages for all of your “easy” problems, then you won’t be prepared to switch when you hit a hard problem. When you need performance, it is too late.

You don’t want to learn a new language at the same time that you are solving your first truly difficult computational problem.
Just vectorize your code?
= rely on mature external libraries,
operating on large blocks of data,
for performance-critical code

Good advice! But...

• Someone has to write those libraries.

• Eventually that person will be you.
 — some problems are impossible or just very awkward to vectorize.
But everyone else is using Matlab/Python/R/…

Julia is still a young, niche language. That imposes real costs — lack of familiarity, rough edges, continual language changes. These are real obstacles.

But it also gives you advantages that Matlab/Python users don’t have.
But I lose access to all the libraries available for other languages?

Very easy to call C/Fortran libraries from Julia, and also to call Python...
Julia leverages Python...

Directly call Python libraries (PyCall package), e.g. to plot with Matplotlib (PyPlot package), and also...

via IPython/Jupyter:

Modern multimedia interactive notebooks mixing code, results, graphics, rich text, equations, interaction

"IJulia"

[jupyter.org]
goto live IJulia notebook demo...

Go to juliabox.org for install-free IJulia on the Amazon cloud

See also julialang.org for more tutorial materials...