Recitation 1. September 10

Focus: rules of matrix multiplication; Gauss-Jordan elimination is LU factorization.
Remark. The most basic rule that you should remember: row column. It shows the order in which you write or compute, e.g.:

- The first index denotes the row, the second number the column.
- You multiply a row by a column to get a number.
- An $n \times m$ matrix has n rows and m columns.

Remark. The formula left matrix multiplication corresponds to row operations explains the mathemagic behind Gauss-Jordan elimination. More precisely, performing row operations on a matrix A is the same as doing $L A$ for some other matrix L.
$\mathbf{L U}$ factorization of a matrix A is a way of writing A as a product of two matrices $A=L U$, where L is a lower-diagonal matrix with units on the diagonal and U is an upper-diagonal matrix.

1. Rules of matrix multiplication. (Section 2.4 of Strang.) Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
-1 & 3 & 2
\end{array}\right], C=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], D=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Which of these matrix operations are allowed?
a) $A B$
b) $(A+B) C$
c) $C(A+B)$
d) $A D$
e) $D A$
f) $C A D$
2. Binomial formula for matrices. Show that $(A+B)^{2}$ is different from $A^{2}+2 A B+B^{2}$ when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

Write down the correct rule: $(A+B)^{2}=A^{2}+\cdots+B^{2}$.

Solution:

3. Consider the following matrices:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], B=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], D=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

How is each row of $B A, C A, D A$ related to the rows of A ?

Solution:

4. $L U$ factorization $=$ Gaussian elimination. Solve the system of linear equations using LU factorization:

$$
\left\{\begin{array}{r}
x+2 y+3 z=1, \\
y+z=2 \\
3 x+y-z=3
\end{array}\right.
$$

Solution:

5. Not all matrices can be written in LU form. (You will deal with this kind of situation when discussing $P A=L U$ factorizations on Friday.) Show directly why this matrix equation is impossible:

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
l & 1
\end{array}\right]\left[\begin{array}{ll}
d & e \\
0 & f
\end{array}\right]
$$

Solution:

