Recitation 1. September 10

Focus: rules of matrix multiplication; Gauss-Jordan elimination is LU factorization.

Remark. The most basic rule that you should remember: row column. It shows the order in which you write or compute, e.g.:

- The first index denotes the row, the second number the column.
- You multiply a row by a column to get a number.
- An $n \times m$ matrix has n rows and m columns.

Remark. The formula left matrix multiplication corresponds to row operations explains the mathemagic behind Gauss-Jordan elimination. More precisely, performing row operations on a matrix A is the same as doing $L A$ for some other matrix L.
$\mathbf{L U}$ factorization of a matrix A is a way of writing A as a product of two matrices $A=L U$, where L is a lower-diagonal matrix with units on the diagonal and U is an upper-diagonal matrix.

1. Rules of matrix multiplication. (Section 2.4 of Strang.) Consider the following matrices:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & -1 & 2
\end{array}\right], B=\left[\begin{array}{lll}
-1 & 0 & 1 \\
-1 & 3 & 2
\end{array}\right], C=\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right], D=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

Which of these matrix operations are allowed?
a) $A B$
b) $(A+B) C$
c) $C(A+B)$
d) $A D$
e) $D A$
f) $C A D$

Solution: In order to multiply two matrices, number of columns in the first should be equal to number of rows in the second.
a) $A B$ not allowed: we cannot multiply a 2×3 matrix by a 2×3 matrix.
b) $(A+B) C$ not allowed.
c) $C(A+B)=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)\left(\begin{array}{ccc}0 & 2 & 1 \\ 2 & 2 & 4\end{array}\right)=\left(\begin{array}{ccc}0 & -4 & -2 \\ -4 & -4 & -8\end{array}\right)$.
d) $A D=\left(\begin{array}{ccc}1 & 2 & 0 \\ 3 & -1 & 2\end{array}\right)\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)=\binom{7}{9}$.
e) $D A$ not allowed.
f) $C A D=C(A D)=\left(\begin{array}{cc}-2 & 0 \\ 0 & -2\end{array}\right)\binom{7}{9}=\binom{-14}{-18}$.
2. Binomial formula for matrices. Show that $(A+B)^{2}$ is different from $A^{2}+2 A B+B^{2}$ when

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right]
$$

Write down the correct rule: $(A+B)^{2}=A^{2}+\cdots+B^{2}$.

Solution:

- $(A+B)^{2}=\left[\begin{array}{ll}2 & 2 \\ 3 & 0\end{array}\right]^{2}=\left[\begin{array}{cc}10 & 4 \\ 6 & 6\end{array}\right] ;$
- $A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]+2\left[\begin{array}{ll}7 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 3 & 0\end{array}\right]=\left[\begin{array}{cc}16 & 2 \\ 3 & 0\end{array}\right]$.
- The correct rule is $(A+B)^{2}=A^{2}+A B+B A+B^{2}$.

3. Consider the following matrices:

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], B=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right], C=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], D=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

How is each row of $B A, C A, D A$ related to the rows of A ?

Solution:

- The first row of $B A$ is twice the first row of A, and the second is minus the second row of A.
- The first row of $C A$ is the second row of A, while the second row is zero.
- The first row of $D A$ is the second row of A and the second row of $D A$ is minus the second row of A.

So you can see that multiplying a matrix A by another matrix on the left performs row operations. Similarly, right multiplication performs column operations.
4. LU factorization $=$ Gaussian elimination. Solve the system of linear equations using LU factorization:

$$
\left\{\begin{aligned}
x+2 y+3 z & =1 \\
y+z & =2 \\
3 x+y-z & =3
\end{aligned}\right.
$$

Solution: We start by writing the system of linear equations in the matrix form:

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
3 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Now we perform Gauss-Jordan elimination on the augmented matrix:

$$
\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
3 & 1 & -1 & 3
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & -5 & -10 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & -5 & 10
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & 1 & 1 & 2 \\
0 & 0 & 1 & -2
\end{array}\right]
$$

So we can deduce that $z=-2$, and by back substitution we get $y=4$ and $x=-1$.
5. Not all matrices can be written in LU form. (You will deal with this kind of situation when discussing $P A=L U$ factorizations on Friday.) Show directly why this matrix equation is impossible:

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
l & 1
\end{array}\right]\left[\begin{array}{ll}
d & e \\
0 & f
\end{array}\right]
$$

Solution: Let us multiply out the right hand side of the equation:

$$
\left[\begin{array}{ll}
1 & 0 \\
l & 1
\end{array}\right]\left[\begin{array}{ll}
d & e \\
0 & f
\end{array}\right]=\left[\begin{array}{cc}
d & e \\
d l & l e+f
\end{array}\right]
$$

Then equate both sides:

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
d & e \\
d l & l e+f
\end{array}\right]
$$

Now try to solve this equation. First, we observe that $d=0$. But then, $2=d l=0 \cdot l=0$, a contradiction. So we cannot find numbers d, e, f, l such that the formula above holds.

