Recitation 2. September 17

Focus: multiplying matrices (and taking inverses), $A=L U, A=L D U$ and $P A=L U$ factorizations, transposes, symmetric matrices

The LU factorization of a square matrix A is the unique way of writing it:

$$
A=L U
$$

where L is a lower-diagonal matrix with 1 on the diagonal and U is an upper-diagonal matrix. This works for almost all matrices A. Even for those for which this doesn't work, you can always write $P A=L U$ for a suitable permutation matrix P.

1. Show that for any matrix A, the square matrix $S=A^{T} A$ is symmetric. For any vector \boldsymbol{v}, show that:

$$
\begin{equation*}
\boldsymbol{v}^{T} \underbrace{A^{T} A}_{S} \boldsymbol{v} \tag{1}
\end{equation*}
$$

is a (1×1 matrix whose only entry is a $)$ non-negative number.

Solution:

2. Compute the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 6 & -1 \\
3 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

by Gauss-Jordan elimination on the augmented matrix $[A \mid I]$.

Solution:

3. Compute the $P A=L D U$ factorization of the matrix:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]
$$

Solution:

4. Write down the 4×4 matrices corresponding to the permutation $\{2,1,4,3\}$ and $\{2,3,4,1\}$ and compute their product. Is the product also a permutation matrix, and if so, to which permutation does it correspond?

Solution:

