Recitation 2. September 17

Focus: multiplying matrices (and taking inverses), $A=L U, A=L D U$ and $P A=L U$ factorizations, transposes, symmetric matrices

The LU factorization of a square matrix A is the unique way of writing it:

$$
A=L U
$$

where L is a lower-diagonal matrix with 1 on the diagonal and U is an upper-diagonal matrix. This works for almost all matrices A. Even for those for which this doesn't work, you can always write $P A=L U$ for a suitable permutation matrix P.

1. Show that for any matrix A, the square matrix $S=A^{T} A$ is symmetric. For any vector \boldsymbol{v}, show that:

$$
\begin{equation*}
\boldsymbol{v}^{T} \underbrace{A^{T} A}_{S} \boldsymbol{v} \tag{1}
\end{equation*}
$$

is a (1×1 matrix whose only entry is a $)$ non-negative number.

Solution: S being symmetric boils down to the fact that $S^{T}=\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A=S$. As for (1), if we consider the vector:

$$
A \boldsymbol{v}=\boldsymbol{w}=\left[\begin{array}{c}
w_{1} \\
\cdots \\
w_{m}
\end{array}\right]
$$

then:

$$
\boldsymbol{v}^{T} A^{T} A \boldsymbol{v}=\left(\boldsymbol{v}^{T} A^{T}\right)(A \boldsymbol{v})=(A \boldsymbol{v})^{T}(A \boldsymbol{v})=\boldsymbol{w}^{T} \boldsymbol{w}=w_{1}^{2}+\ldots+w_{m}^{2} \geq 0
$$

This non-negativity will play an important role in a few weeks.
2. Compute the inverse of the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 6 & -1 \\
3 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]
$$

by Gauss-Jordan elimination on the augmented matrix $[A \mid I]$.

Solution: The augmented matrix is:

$$
\left[\begin{array}{cccccc}
\hline 1 & 6 & -1 & 1 & 0 & 0 \\
\hline 3 & 1 & 2 & 0 & 1 & 0 \\
\cline { 1 - 1 } & 2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(pivots are boxed) The first step in Gauss-Jordan elimination is to subtract 3 times the first row from the second row and 2 times the first row from the third row:

$$
\left[\begin{array}{cccccc}
\left\lfloor\frac{1}{1}\right. & 6 & -1 & 1 & 0 & 0 \\
0 & -17 & 5 & -3 & 1 & 0 \\
0 & -10 & 3 & -2 & 0 & 1
\end{array}\right]
$$

Then we subtract $\frac{10}{17}$ times the second row from the third row:

$$
\left[\begin{array}{cccccc}
\lfloor 1 & 6 & -1 & 1 & 0 & 0 \\
0 & -17 & 5 & -3 & 1 & 0 \\
0 & 0 & \left.\begin{array}{|c|ccc}
\frac{1}{17} & -\frac{4}{17} & -\frac{10}{17} & 1
\end{array}\right]
\end{array}\right.
$$

The next step is to make all pivots 1 , by dividing the second row by -17 and multiplying the third row by 17:

$$
\left[\begin{array}{cccccc}
\hline 1 & 6 & -1 & 1 & 0 & 0 \\
0 & 1 & -\frac{5}{17} & \frac{3}{17} & -\frac{1}{17} & 0 \\
0 & 0 & 1 & -4 & -10 & 17
\end{array}\right]
$$

To complete Gauss-Jordan elimination, we need to make the entries above the pivots 0 . To do so, we first add $\frac{5}{17}$ times the third row to the second row:

$$
\left[\begin{array}{cccccc}
\boxed{1} & 6 & -1 & 1 & 0 & 0 \\
0 & \boxed{1} & 0 & -1 & -3 & 5 \\
0 & 0 & \boxed{1} & -4 & -10 & 17
\end{array}\right]
$$

Then we add -6 times the second row to the first row and 1 times the third row to the first row:

$$
\left[\begin{array}{cccccc}
\boxed{1} & 0 & 0 & 3 & 8 & -13 \\
0 & \boxed{1} & 0 & -1 & -3 & 5 \\
0 & 0 & \boxed{1} & -4 & -10 & 17
\end{array}\right]
$$

Thus, the inverse is:

$$
A^{-1}=\left[\begin{array}{ccc}
3 & 8 & -13 \\
-1 & -3 & 5 \\
-4 & -10 & 17
\end{array}\right]
$$

3. Compute the $P A=L D U$ factorization of the matrix:

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]
$$

Solution: There are two choices for the 2×2 permutation matrix P :

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

The first one will not work, since $I A=A$ does not have an $L U$ factorization (this is because Gaussian elimination will not work on the matrix A without a row exchange). Therefore, let us exchange the rows of A, which is achieved by multiplying with the second permutation matrix above:

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] A=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

This matrix is already in row echelon for, so we conclude that $P A=L U$ with:

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad L=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad U=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

4. Write down the 4×4 matrices corresponding to the permutation $\{2,1,4,3\}$ and $\{2,3,4,1\}$ and compute their product. Is the product also a permutation matrix, and if so, to which permutation does it correspond?

Solution: The permutation matrices corresponding to the two permutations are:

$$
P_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \quad \text { and } \quad P_{2}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

The product of these matrices is:

$$
P_{1} P_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

which is the permutation matrix corresponding to the permutation $\{3,2,1,4\}$. In general, the product of the permutation matrices corresponding to permutation $\{\sigma(1), \ldots, \sigma(n)\},\left\{\sigma^{\prime}(1), \ldots, \sigma^{\prime}(n)\right\}$ will be the permutation matrix corresponding to the permutation $\sigma^{\prime}(\sigma(1)), \ldots, \sigma^{\prime}(\sigma(n))$.

