Recitation 3. September 24

Focus: vector spaces and subspaces, the column space and null space of a matrix

A *vector space* is a set V in which you may add and scale vectors; a *subspace* of V is a subset of V which is closed under addition of vectors and scalar multiplication.

Let A be an $m \times n$ matrix. The **column space** C(A) of A is the span of its columns; it is a subspace of \mathbb{R}^m . The **null space** N(A) of A the set of vectors v such that Av = 0; it is a subspace of \mathbb{R}^n .

1. Determine whether the following subsets of \mathbb{R}^3 are subspaces of \mathbb{R}^3 :

(a) The set of vectors of the form
$$\begin{vmatrix} 1 \\ -1 \\ a \end{vmatrix}$$
, where *a* is some real number.

- (b) The set $\{0\}$ consisting of only the zero vector.
- (c) The set of vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ satisfying the equation 4x 3y + 2z = 0.

Solution: (a) This set is not a subspace. For instance, $\begin{bmatrix} 1\\ -1\\ a \end{bmatrix} + \begin{bmatrix} 1\\ -1\\ b \end{bmatrix} = \begin{bmatrix} 2\\ -2\\ a+b \end{bmatrix}$ for any $a, b \in \mathbb{R}$, which is not in the set. (Also, this set does not contain **0**.) (b) This set is a subspace. It is closed under addition because $\mathbf{0} + \mathbf{0} = \mathbf{0}$, and closed under scalar multiplication because $c\mathbf{0} = \mathbf{0}$ for any $c \in \mathbb{R}$. (c) This set is a subspace. If $\begin{bmatrix} x\\ y\\ z \end{bmatrix}$ and $\begin{bmatrix} x'\\ y'\\ z' \end{bmatrix}$ are elements of the set, then 4x - 3y + 2z = 0 and 4x' - 3y' + 2z' = 0. However, then $(4x - 3y + 2z) + (4x' - 3y' + 2z') = 0 \Leftrightarrow 4(x + x') - 3(y + y') + 2(z + z') = 0$, so $\begin{bmatrix} x + x'\\ y + y'\\ z + z' \end{bmatrix} = \begin{bmatrix} x\\ y\\ z \end{bmatrix} + \begin{bmatrix} x'\\ y'\\ z' \end{bmatrix}$ is in the set. If $c \in \mathbb{R}$, then $c(4x - 3y + 2z) = 0 \Leftrightarrow 4(cx) - 3(cy) + 2(cz) = 0$, so $\begin{bmatrix} cx\\ y\\ z \end{bmatrix} = c \begin{bmatrix} x\\ y\\ z \end{bmatrix}$ is in the set. (Note also that this set is the null space of $\begin{bmatrix} 4 & -3 & 2 \end{bmatrix}$.)

2. Let

$$A = \begin{bmatrix} 1 & -3 & 0\\ 2 & -7 & -1\\ -3 & 12 & 3 \end{bmatrix}.$$

Determine the space W of vectors \boldsymbol{b} such that $A\boldsymbol{v} = \boldsymbol{b}$ has a solution. Find a lower triangular 3×3 matrix whose column space is W.

Solution: This space W is precisely the column space of A, i.e. the linear span of $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} -3\\-7\\12 \end{bmatrix}$, and $\begin{bmatrix} 0\\-1\\3 \end{bmatrix}$. However, $\begin{bmatrix} 0\\-1\\3 \end{bmatrix} = 3 \begin{bmatrix} 1\\2\\-3 \end{bmatrix} + \begin{bmatrix} -3\\-7\\12 \end{bmatrix}$ (doing column operations, for instance, would show you this), so W equals

the linear span of just
$$\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$$
 and $\begin{bmatrix} -3\\-7\\12 \end{bmatrix}$. (That is, vectors of the form $\begin{bmatrix} a-3b\\2a-7b\\-3a+12b \end{bmatrix}$ for some real numbers a, b .) We know from the above discussion that $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 0\\-1\\3 \end{bmatrix}$ span W , so the lower triangular matrix $\begin{bmatrix} 1&0&0\\2&-1&0\\-3&3&0 \end{bmatrix}$ has column space W .

3. Use Gauss-Jordan elimination to compute the null space N(X) of the matrix

$$X = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -2 & 0 & 5 \\ -2 & 0 & -2 & 1 \end{bmatrix}.$$

Solution: We perform Gauss-Jordan elimination on X:

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -2 & 0 & 5 \\ -2 & 0 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -8 & 3 & 5 \\ 0 & 4 & -4 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & -8 & 3 & 5 \\ 0 & 0 & -\frac{5}{2} & \frac{7}{2} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -\frac{7}{5} \\ 0 & 1 & -\frac{33}{20} \\ 0 & 0 & 1 & -\frac{5}{5} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -\frac{7}{5} \\ 0 & 1 & 0 & -\frac{23}{20} \\ 0 & 0 & 1 & -\frac{7}{5} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{9}{10} \\ 0 & 1 & 0 & -\frac{23}{20} \\ 0 & 0 & 1 & -\frac{7}{5} \end{bmatrix},$$
so the null space consists of vectors
$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
 such that
$$a = -\frac{9}{10}d, \quad b = \frac{23}{20}d, \text{ and } c = \frac{7}{5}d.$$
It is therefore the space of vectors $\alpha \begin{bmatrix} -18 \\ 23 \\ 28 \\ 20 \end{bmatrix}$, where $\alpha \in \mathbb{R}$.

4. Let B be an $m \times n$ matrix. Show that if $\boldsymbol{v} \in C(B^T)$, then $\boldsymbol{v} \cdot \boldsymbol{u} = 0$ for any $\boldsymbol{u} \in N(B)$.

Solution: Let $\boldsymbol{u} \in N(B)$. If $\boldsymbol{v} \in C(B^T)$, then $\boldsymbol{v} = B^T \boldsymbol{w}$ for some $\boldsymbol{w} \in \mathbb{R}^m$. Then, $\boldsymbol{v} \cdot \boldsymbol{u} = \boldsymbol{v}^T \boldsymbol{u} = (B^T \boldsymbol{w})^T \boldsymbol{u} = \boldsymbol{w}^T B \boldsymbol{u}$. However, because $\boldsymbol{u} \in N(B)$, $B\boldsymbol{u} = 0$, so the above expression equals 0.