Recitation 3. September 24

Focus: vector spaces and subspaces, the column space and null space of a matrix
A vector space is a set V in which you may add and scale vectors; a subspace of V is a subset of V which is closed under addition of vectors and scalar multiplication.

Let A be an $m \times n$ matrix. The column space $C(A)$ of A is the span of its columns; it is a subspace of \mathbb{R}^{m}. The null space $N(A)$ of A the set of vectors \boldsymbol{v} such that $A \boldsymbol{v}=\mathbf{0}$; it is a subspace of \mathbb{R}^{n}.

1. Determine whether the following subsets of \mathbb{R}^{3} are subspaces of \mathbb{R}^{3} :
(a) The set of vectors of the form $\left[\begin{array}{c}1 \\ -1 \\ a\end{array}\right]$, where a is some real number.
(b) The set $\{\mathbf{0}\}$ consisting of only the zero vector.
(c) The set of vectors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ satisfying the equation $4 x-3 y+2 z=0$.

Solution: (a) This set is not a subspace. For instance, $\left[\begin{array}{c}1 \\ -1 \\ a\end{array}\right]+\left[\begin{array}{c}1 \\ -1 \\ b\end{array}\right]=\left[\begin{array}{c}2 \\ -2 \\ a+b\end{array}\right]$ for any $a, b \in \mathbb{R}$, which is not in the set. (Also, this set does not contain 0.)
(b) This set is a subspace. It is closed under addition because $\mathbf{0}+\mathbf{0}=\mathbf{0}$, and closed under scalar multiplication because $c \mathbf{0}=\mathbf{0}$ for any $c \in \mathbb{R}$.
(c) This set is a subspace. If $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$ are elements of the set, then $4 x-3 y+2 z=0$ and $4 x^{\prime}-3 y^{\prime}+2 z^{\prime}=0$. However, then

$$
(4 x-3 y+2 z)+\left(4 x^{\prime}-3 y^{\prime}+2 z^{\prime}\right)=0 \Leftrightarrow 4\left(x+x^{\prime}\right)-3\left(y+y^{\prime}\right)+2\left(z+z^{\prime}\right)=0
$$

so $\left[\begin{array}{l}x+x^{\prime} \\ y+y^{\prime} \\ z+z^{\prime}\end{array}\right]=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]$ is in the set. If $c \in \mathbb{R}$, then

$$
c(4 x-3 y+2 z)=0 \Leftrightarrow 4(c x)-3(c y)+2(c z)=0
$$

so $\left[\begin{array}{l}c x \\ c y \\ c z\end{array}\right]=c\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ is in the set. (Note also that this set is the null space of $\left[\begin{array}{lll}4 & -3 & 2\end{array}\right]$.)
2. Let

$$
A=\left[\begin{array}{ccc}
1 & -3 & 0 \\
2 & -7 & -1 \\
-3 & 12 & 3
\end{array}\right]
$$

Determine the space W of vectors \boldsymbol{b} such that $\boldsymbol{A} \boldsymbol{v}=\boldsymbol{b}$ has a solution. Find a lower triangular 3×3 matrix whose column space is W.

Solution: This space W is precisely the column space of A, i.e. the linear span of $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right],\left[\begin{array}{c}-3 \\ -7 \\ 12\end{array}\right]$, and $\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]$. However, $\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]=3\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]+\left[\begin{array}{c}-3 \\ -7 \\ 12\end{array}\right]$ (doing column operations, for instance, would show you this), so W equals
the linear span of just $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$ and $\left[\begin{array}{c}-3 \\ -7 \\ 12\end{array}\right]$. (That is, vectors of the form $\left[\begin{array}{c}a-3 b \\ 2 a-7 b \\ -3 a+12 b\end{array}\right]$ for some real numbers a, b.) We know from the above discussion that $\left[\begin{array}{c}1 \\ 2 \\ -3\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]$ span W, so the lower triangular matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & -1 & 0 \\
-3 & 3 & 0
\end{array}\right]
$$

has column space W.
3. Use Gauss-Jordan elimination to compute the null space $N(X)$ of the matrix

$$
X=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 0 & -2 & 1
\end{array}\right]
$$

Solution: We perform Gauss-Jordan elimination on X :

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 0 & -2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & -8 & 3 & 5 \\
0 & 4 & -4 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & -8 & 3 & 5 \\
0 & 0 & -\frac{5}{2} & \frac{7}{2}
\end{array}\right] \rightarrow} \\
& {\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
0 & 1 & -\frac{3}{8} & -\frac{5}{8} \\
0 & 0 & 1 & -\frac{7}{5}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 2 & 0 & -\frac{7}{5} \\
0 & 1 & 0 & -\frac{23}{20} \\
0 & 0 & 1 & -\frac{7}{5}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{9}{10} \\
0 & 1 & 0 & -\frac{23}{20} \\
0 & 0 & 1 & -\frac{7}{5}
\end{array}\right],}
\end{aligned}
$$

so the null space consists of vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that

$$
a=-\frac{9}{10} d, \quad b=\frac{23}{20} d, \text { and } c=\frac{7}{5} d .
$$

It is therefore the space of vectors $\alpha\left[\begin{array}{c}-18 \\ 23 \\ 28 \\ 20\end{array}\right]$, where $\alpha \in \mathbb{R}$.
4. Let B be an $m \times n$ matrix. Show that if $\boldsymbol{v} \in C\left(B^{T}\right)$, then $\boldsymbol{v} \cdot \boldsymbol{u}=0$ for any $\boldsymbol{u} \in N(B)$.

Solution: Let $\boldsymbol{u} \in N(B)$. If $\boldsymbol{v} \in C\left(B^{T}\right)$, then $\boldsymbol{v}=B^{T} \boldsymbol{w}$ for some $\boldsymbol{w} \in \mathbb{R}^{m}$. Then,

$$
\boldsymbol{v} \cdot \boldsymbol{u}=\boldsymbol{v}^{T} \boldsymbol{u}=\left(B^{T} \boldsymbol{w}\right)^{T} \boldsymbol{u}=\boldsymbol{w}^{T} B \boldsymbol{u}
$$

However, because $\boldsymbol{u} \in N(B), B \boldsymbol{u}=0$, so the above expression equals 0 .

