Recitation 6. October 22

Focus: linear transformations and matrix representations, determinants

A linear transformation is a map $\phi : \mathbb{R}^n \to \mathbb{R}^m$ such that for any $v, w \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$,

$$\phi(\boldsymbol{v} + \boldsymbol{w}) = \phi(\boldsymbol{v}) + \phi(\boldsymbol{w})$$
 and $\phi(\alpha \boldsymbol{v}) = \alpha \phi(\boldsymbol{v}).$

A linear transformation ϕ can be expressed as a matrix A, with respect to given bases $\{v_1, \ldots, v_n\}$ of \mathbb{R}^n and $\{w_1, \ldots, w_m\}$ of \mathbb{R}^m : the (i, j) entries a_{ij} of A are such that $\phi(v_k) = a_{1k}w_1 + \cdots + a_{mk}w_m$.

The *determinant* of an $n \times n$ matrix A is the factor by which the linear map $v \mapsto Av$ scales volumes of regions in \mathbb{R}^n ; it is denoted det A.

1. Determine whether the following maps are linear. If so, find a matrix representation of the map in terms of the standard basis of \mathbb{R}^3 , and then find a matrix representation in terms of the basis $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

(a)
$$\phi\left(\begin{bmatrix} x\\y\\z \end{bmatrix}\right) = \begin{bmatrix} x+y+z\\x^2+y^2+z^2\\0 \end{bmatrix}$$
.
(b) Let $\boldsymbol{a} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0 \end{bmatrix} \in \mathbb{R}^3$, and define $\psi(\boldsymbol{v}) = (\boldsymbol{a} \cdot \boldsymbol{v})\boldsymbol{a}$.
(c) $\sigma\left(\begin{bmatrix} x\\y\\z \end{bmatrix}\right) = \begin{bmatrix} x-y-z\\x+2y\\y-3z \end{bmatrix}$.

Solution:

2. Compute the determinant of

$$\begin{bmatrix} 0 & 0 & 2 & -1 \\ 0 & 0 & -4 & -2 \\ 1 & 3 & -1 & 2 \\ -1 & 3 & 0 & 5 \end{bmatrix}$$

by using row operations.

Solution:

3. Compute the determinant of

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -2 & 0 & 5 \\ -2 & 0 & -2 & 1 \\ 1 & 0 & -1 & 4 \end{bmatrix}$$

by doing a cofactor expansion along its second row.

Solution: