Recitation 6. October 22

Focus: linear transformations and matrix representations, determinants
A linear transformation is a map $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$,

$$
\phi(\boldsymbol{v}+\boldsymbol{w})=\phi(\boldsymbol{v})+\phi(\boldsymbol{w}) \quad \text { and } \quad \phi(\alpha \boldsymbol{v})=\alpha \phi(\boldsymbol{v}) .
$$

A linear transformation ϕ can be expressed as a matrix A, with respect to given bases $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of \mathbb{R}^{n} and $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right\}$ of \mathbb{R}^{m} : the (i, j) entries $a_{i j}$ of A are such that $\phi\left(\boldsymbol{v}_{k}\right)=a_{1 k} \boldsymbol{w}_{1}+\cdots+a_{m k} \boldsymbol{w}_{m}$.

The determinant of an $n \times n$ matrix A is the factor by which the linear map $\boldsymbol{v} \mapsto A \boldsymbol{v}$ scales volumes of regions in $\mathbb{R}^{n} ;$ it is denoted $\operatorname{det} A$.

1. Determine whether the following maps are linear. If so, find a matrix representation of the map in terms of the standard basis of \mathbb{R}^{3}, and then find a matrix representation in terms of the basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) $\phi\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y+z \\ x^{2}+y^{2}+z^{2} \\ 0\end{array}\right]$.
(b) Let $\boldsymbol{a}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right] \in \mathbb{R}^{3}$, and define $\psi(\boldsymbol{v})=(\boldsymbol{a} \cdot \boldsymbol{v}) \boldsymbol{a}$.
(c) $\sigma\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-y-z \\ x+2 y \\ y-3 z\end{array}\right]$.

Solution:

2. Compute the determinant of

$$
\left[\begin{array}{cccc}
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2 \\
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5
\end{array}\right]
$$

by using row operations.

Solution:

3. Compute the determinant of

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 0 & -2 & 1 \\
1 & 0 & -1 & 4
\end{array}\right]
$$

by doing a cofactor expansion along its second row.

Solution:

