Recitation 7. October 29

Focus: Determinants and inverses, eignevalues and eigenvectors

The cofactors $C_{i j}$ of a square matrix A are given by $C_{i j}=(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$, where $M_{i j}$ is the matrix given by removing the $i t h$ row and $j t h$ column of A. We can put these into the cofactor matrix X by $X_{i j}=C_{j i}$. We can compute the inverse using this matrix by $A^{-1}=\frac{1}{\operatorname{det}(A)} X$. Using this we can also find a solution to $A x=b$, by computing the entries of x, by $x_{i}=\frac{\operatorname{det}\left(B_{i}\right)}{\operatorname{det}(A)}$. Here B_{i} is given by replacing the $i t h$ column of A with the vector b

The eigenvectors of a square matrix A is a non-zero vector \mathbf{v} that satisfies an equation $A \mathbf{v}=\lambda \mathbf{v}$ for some λ. In the above equation if you have an eigenvector the scalar λ is known as an eigenvalue of A. These can be computed by computing the zeroes of the equation $\operatorname{det}(A-\lambda I)$.

1. Use the cofactor formula to invert the following matrices

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right],\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 3 \\
1 & 3 & 5
\end{array}\right]
$$

Solution: First we compute the matrix of cofactors for these 2 matrices. They are given by

$$
\left[\begin{array}{ccc}
24 & -12 & -2 \\
0 & 6 & -5 \\
0 & 0 & 4
\end{array}\right],\left[\begin{array}{ccc}
6 & -2 & 0 \\
-2 & 4 & -2 \\
0 & -2 & 2
\end{array}\right]
$$

And the determinants of these matrices are given by 24 and 4 respectively, so the inverses are given by

$$
\frac{1}{24}\left[\begin{array}{ccc}
24 & -12 & -2 \\
0 & 6 & -5 \\
0 & 0 & 4
\end{array}\right], \frac{1}{2}\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

2. Use Cramer's rule to solve the following equations

$$
\begin{aligned}
& a x+b y=0 \quad x+3 y-z=0 \\
& c x+d y=1 \quad x+y+4 z=0 \\
& x+z=1
\end{aligned}
$$

Solution: By Cramer's rule to compute x we replace the first column of the matrix with the solution vector and similarly for the other variable. So for the first equation

$$
x=\frac{\operatorname{det}\left(\left[\begin{array}{ll}
0 & b \\
1 & d
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)}=-\frac{b}{a d-b c}, y=\frac{\operatorname{det}\left(\left[\begin{array}{ll}
a & 0 \\
c & 1
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)}=\frac{a}{a d-b c}
$$

For the second equation, first compute the determinant of the matrix $\operatorname{det}\left(\left[\begin{array}{ccc}1 & 3 & -1 \\ 1 & 1 & 4 \\ 1 & 0 & 1\end{array}\right]\right)=11$. So we get the solution by Cramer's rule is given by

$$
x=\frac{1}{11} \operatorname{det}\left(\left[\begin{array}{ccc}
0 & 3 & -1 \\
0 & 1 & 4 \\
1 & 0 & 1
\end{array}\right]=\frac{13}{11}, y=\frac{1}{11} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & 4 \\
1 & 1 & 1
\end{array}\right]=-\frac{5}{11}, z=\frac{1}{11} \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 3 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=-\frac{2}{11}\right.\right.\right.
$$

3. a)Find the eigenvalues and eigenvectors of the following matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right]
$$

Let $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the linear transformation given by $v \mapsto A v$. Can you find a basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ with respect to which, ϕ is given by a diagonal matrix?
b) Do the same for the matrix

$$
B=\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: a) First we compute the characteristic polynomial by $\operatorname{det}(A-\lambda I)=(\lambda-1)(\lambda+1)-3=\lambda^{2}-4=$ $(\lambda-2)(\lambda+2)$, so the eigenvalues of the matrix are given by $\lambda_{1}=2$ and $\lambda_{2}=-2$. The eigenvectors for λ_{1} are given by vectors in the nullspace of $A-2 I=\left[\begin{array}{cc}-1 & 1 \\ 3 & -3\end{array}\right]$, so the eigenvector is given by $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. The eigenvectors for λ_{2} are given by vectors in the nullspace of $A+2 I=\left[\begin{array}{ll}3 & 1 \\ 3 & 1\end{array}\right]$, so the eigenvector is given by $\mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -3\end{array}\right]$. Note that with respect to the basis of eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ the linear transformation is given by the diagonal matrix $\operatorname{diag}(2,-2)$
b) First we compute the characteristic polynomial by $\operatorname{det}(A-\lambda I)=(\lambda-2)(\lambda-1) \lambda$, so the eigenvalues of the matrix are given by $\lambda_{1}=2, \lambda_{2}=1$ and $\lambda_{3}=0$. The eigenvectors for λ_{1} are given by vectors in the nullspace of $A-2 I=\left[\begin{array}{ccc}0 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -2\end{array}\right]$, so the eigenvector is given by $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. The eigenvectors for λ_{2} are given by vectors in the nullspace of $A-1 I=\left[\begin{array}{ccc}1 & -1 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & -1\end{array}\right]$, so the eigenvector is given by $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. The eigenvectors for λ_{3} are given by vectors in the nullspace of $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$, so the eigenvector is given by $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Note that with respect to the basis of eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} the linear transformation is given by the diagonal matrix $\operatorname{diag}(2,1,0)$
4. a) Let A be an $n \times n$ matrix and let X be the cofactor matrix. Find a formula for $\operatorname{det}(X)$ in terms of A
b) If A has an eigenvector \mathbf{v}, with eigenvalues λ, ie $A \mathbf{v}=\lambda \mathbf{v}$, show that $B=A-7 I$ also has \mathbf{v} as an eigenvector. What is its eigenvalue?

Solution: a) Note that $A X=\operatorname{det}(A) I$. So taking determinant of this equation we get $\operatorname{det}(A) \operatorname{det}(X)=$ $\operatorname{det}(A)^{n}$. Hence it follows that $\operatorname{det}(X)=\operatorname{det}(A)^{n-1}$
b) $B \mathbf{v}=(A-7 I) \mathbf{v}=A \mathbf{v}-7 \mathbf{v}=(\lambda-7) \mathbf{v}$, so indeed \mathbf{v} is an eigenvector with eigenvalue $\lambda-7$

