## Recitation 8. November 5

## Focus: Algebraic and geometric multiplicity. Diagonalizability.

The eigenvalues of a square matrix $A$ can be computed by finding the roots of the characteristic polynomial $\operatorname{det}(A-\lambda I)$. The characteristic polynomial may have repeated roots, and the number of times a root $\lambda_{i}$ appears is called the algebraic multiplicity of $\lambda_{i}$. The geometric multiplicity of an eigenvalue $\lambda_{i}$ is the dimension of the nullspace of $\left(A-\lambda_{i} I\right)$, which is always at least 1 . The geometric multiplicity of $\lambda_{i}$ is at most the algebraic multiplicity of $\lambda_{i}$.

A square matrix $A$ is diagonalizable if there exists a diagonal matrix $D$ and invertible matrix $S$ such that $S D S^{-1}=$ $A$. The matrix $A$ is diagonalizable if and only if the geometric multiplicity of each eigenvalue of $A$ is equal to the algebraic multiplicity of that eigenvalue.

The matrix exponential is defined by $e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\frac{A^{3} t^{3}}{6}+\cdots+\frac{A^{n} t^{n}}{n!}+\cdots$. The formula $e^{S D S^{-1} t}=S e^{D t} S^{-1}$ means that it is straightforward to calculate $e^{A t}$ whenever $A$ is diagonalizable.

1. Which of the following matrices are diagonalizable? What are the algebraic and geometric multiplicities of the eigenvalues?

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right], B=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], \text { and } D=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

## Solution:

2. Suppose that a $3 \times 3$ matrix $A$ has an eigenvector $\left[\begin{array}{l}4 \\ 2 \\ 4\end{array}\right]$ with eigenvalue 3 . Name an eigenvalue and eigenvector of the matrix $A^{4}$.

## Solution:

3. Suppose $A=\left[\begin{array}{cc}1 & -2 \\ 1 & 4\end{array}\right]$.
4. Find a diagonal matrix $D$ and an invertible matrix $S$ such that $S D S^{-1}=A$.
5. Calculate $A^{4}$ and the matrix exponential $e^{A t}$.

## Solution:

4. Two matrices $A$ and $B$ are said to be similar if there is an invertible matrix $S$ such that $A=S B S^{-1}$. Similar matrices have the same eigenvalues, and each of their eigenvalues have the same geometric and algebraic multiplicities. Construct two matrices $A$ and $B$ with the same characteristic polynomial, but which are not similar. Prove that if $C$ and $D$ are similar, then $C^{2}$ and $D^{2}$ are also similar.

## Solution:

