Recitation 11. November 26

Focus: random variables, principal component analysis (PCA)

A random variable is a quantity X that takes values in \mathbb{R}. It can be discrete, meaning that it takes only countably many possible values x_{i} each with probability p_{i}, or continuous, in which case it is associated to a probability distribution $p(x)($ where $p: \mathbb{R} \rightarrow \mathbb{R})$.

The mean (or expected value) $E[X]$ of X is the sum $\sum_{i} x_{i} p_{i}$ if X is discrete and the integral $\int_{-\infty}^{\infty} x p(x) d x$ if X is continuous. If Y is another random variable, and $a, b \in \mathbb{R}$, then $E[a X+b Y]=a E[X]+b E[Y]$ (so the mean obeys this linearity property). The variance $\Sigma=\Sigma_{X X}$ of a random variable X is $E\left[(X-\mu)^{2}\right]=E\left[(X-E[X])^{2}\right]$. The covariance $\Sigma_{X Y}$ of two random variables X and Y is $E[(X-E[X])(Y-E[Y])]$.

Given n random variables X_{1}, \ldots, X_{n}, we may assemble them into a vector $\boldsymbol{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$, called a random vector. The covariance matrix of these random variables X_{1}, \ldots, X_{n} is the matrix

$$
\left[\begin{array}{ccc}
\Sigma_{X_{1} X_{1}} & \cdots & \Sigma_{X_{1} X_{n}} \\
\vdots & \ddots & \vdots \\
\Sigma_{X_{n} X_{1}} & \cdots & \Sigma_{X_{n} X_{n}}
\end{array}\right]=E\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right]
$$

where $\boldsymbol{\mu}=\left[\begin{array}{c}\mu_{1} \\ \vdots \\ \mu_{n}\end{array}\right]$ is the vector of means.

1. Sample from the numbers 1 to 1000 with equal probabilities $1 / 1000$, and look at the last digit of the sample, squared. This square can end with $X=0,1,4,5,6$, or 9 . What are the probabilities $p_{0}, p_{1}, p_{4}, p_{5}, p_{6}$ and p_{9} ? Compute the mean and variance of X.

Solution: If $n=10 k$, then the last digit of n^{2} will be 0 . If $n=10 k+1$ or $n=10 k+9$, then the last digit of n^{2} will be 1 . If $n=10 k+2$ or $n=10 k+8$, then the last digit of n^{2} will be 4 . If $n=10 k+3$ or $n=10 k+7$, then the last digit of n^{2} will be 9 . If $n=10 k+4$ or $n=10 k+6$, then the last digit of n^{2} will be 6 . If $n=10 k+5$, then the last digit of n^{2} will be 5 . Thus,

$$
p_{0}=\frac{1}{10} ; p_{1}=\frac{1}{5} ; p_{4}=\frac{1}{5} ; p_{5}=\frac{1}{10} ; p_{6}=\frac{1}{5} ; p_{9}=\frac{1}{5} .
$$

We therefore see that the mean is

$$
0 \cdot \frac{1}{10}+1 \cdot \frac{1}{5}+4 \cdot \frac{1}{5}+5 \cdot \frac{1}{10}+6 \cdot \frac{1}{5}+9 \cdot \frac{1}{5}=\frac{9}{2}
$$

and the variance

$$
E\left[\left(X-\frac{9}{2}\right)^{2}\right]=\left(0^{2} \cdot \frac{1}{10}+1^{2} \cdot \frac{1}{5}+4^{2} \cdot \frac{1}{5}+5^{2} \cdot \frac{1}{10}+6^{2} \cdot \frac{1}{5}+9^{2} \cdot \frac{1}{5}\right)-\left(\frac{9}{2}\right)^{2}=\frac{293}{10}-\frac{81}{4}=\frac{181}{20}
$$

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local shelter, respectively. Suppose the random vector $\left[\begin{array}{c}A \\ H \\ W\end{array}\right]$ takes two values, $\left[\begin{array}{c}7 \\ 20 \\ 132\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 24 \\ 120\end{array}\right]$ with probabilities p and $1-p$ respectively. Compute the covariance matrix of A, H, and W.

Solution: Let $\mu_{A}=7 p+4(1-p)=3 p+4, \mu_{H}=20 p+24(1-p)=24-4 p$, and $\mu_{W}=132 p+120(1-p)=$ $12 p+120$, the means of the random variables. Then,
$\Sigma_{A A}=E\left[\left(A-\mu_{A}\right)^{2}\right]=(49 p+16(1-p))-(3 p+4)^{2}=(33 p+16)-\left(9 p^{2}+24 p+16\right)=-9 p^{2}+9 p=9 p(1-p)$
Similarly,

$$
\Sigma_{H H}=(400 p+576(1-p))-(24-4 p)^{2}=(-176 p+576)-\left(576-192 p+16 p^{2}\right)=16 p(1-p)
$$

and

$$
\Sigma_{W W}=(120-132)^{2} p(1-p)=144 p(1-p)
$$

Now,
$\Sigma_{A H}=E\left[\left(A-\mu_{A}\right)\left(H-\mu_{H}\right)\right]=E[A H]-\mu_{H} E[A]-\mu_{A} E[H]+\mu_{A} \mu_{H}=(7-4)(20-24) p(1-p)=-12 p(1-p)$ and then similarly

$$
\Sigma_{A W}=(7-4)(132-120) p(1-p)=36 p(1-p)
$$

and

$$
\Sigma_{H W}=(20-24)(132-120) p(1-p)=-48 p(1-p) .
$$

Thus the covariance matrix is

$$
p(1-p)\left[\begin{array}{ccc}
9 & -12 & 36 \\
-12 & 16 & -48 \\
36 & -48 & 144
\end{array}\right] .
$$

3. Suppose now that the random variables A, H, W from above instead have the covariance matrix

$$
K=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -2 \\
2 & -2 & 6
\end{array}\right]
$$

Find three linear combinations of A, H, W which are pairwise independent random variables. What is the variance of each?

Solution: We begin by diagonalizing K. Its characteristic polynomial is

$$
p_{K}(\lambda)=(3-\lambda)((3-\lambda)(6-\lambda)-4)+((-1)(6-\lambda)+4)+2(2-2(3-\lambda))=(2-\lambda)^{2}(8-\lambda),
$$

so the eigenvalues of K are 2 (with multiplicity 2) and 8 . We now find a basis of eigenvectors: We have that

$$
K-8 I=\left[\begin{array}{ccc}
-5 & -1 & 2 \\
-1 & -5 & -2 \\
2 & -2 & -2
\end{array}\right],
$$

from which we can spot $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ as a vector spanning its null space. Thus, $\frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ is an eigenvector (of norm 1) of K corresponding to eigenvalue 8.
Similarly, we have that

$$
K-2 I=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right],
$$

from which we can spot $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ as vectors spanning its null space; moreover, these vectors are orthogonal. (In this case, it was fairly easy to find a pair of orthogonal vectors spanning the null space
by inspection, but in general you can always row reduce to find a basis for the null space and then apply Gram-Schmidt.) Thus, we have that $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\frac{1}{\sqrt{3}}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ form an orthonormal basis for the eigenspace for eigenvalue 2.
We therefore have that

$$
\begin{aligned}
K & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right] .
\end{aligned}
$$

Therefore, the random vector

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{c}
A \\
H \\
W
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{6}} A-\frac{1}{\sqrt{6}} H+\frac{2}{\sqrt{6}} W \\
\frac{1}{\sqrt{2}} A+\frac{1}{\sqrt{2}} H \\
-\frac{1}{\sqrt{3}} A+\frac{1}{\sqrt{3}} H+\frac{1}{\sqrt{3}} W
\end{array}\right]
$$

consists of random variables which are pairwise independent (see p. 94 of the lecture notes, for instance). Their variances are, respectively, 8,2 and 2.
This process is known as principal component analysis. Note that because the covariance matrix in \#2 has rank 2, it has 0 as an eigenvalue. Therefore, by a similar analysis we find that there must be a linear combination in that case of A, H, W which has variance 0 , i.e. it is a constant.
4. Let X be a random variable. Suppose the mean $E[X]=\mu$ and the variance $\Sigma_{X X}=\sigma^{2}$. Compute $E\left[X^{2}\right]$ in terms of μ and σ.

Solution: We have by definition that
$\Sigma_{X X}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}-2 \mu X+\mu^{2}\right]=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} E[1]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=E\left[X^{2}\right]-\mu^{2}$, so $E\left[X^{2}\right]=\sigma^{2}+\mu^{2}$.

